Chapter 4: AMI BIOS

Save Changes and Exit

When you have completed the system configuration changes, select this option to leave the BIOS Setup Utility and reboot the computer, so the new system con- figuration parameters can take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Discard Changes and Exit

Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Discard Changes

Select this option and press <Enter> to discard all the changes and return to the AMI BIOS Utility Program.

Load Optimal Defaults

To set this feature, select Load Optimal Defaults from the Exit menu and press <Enter>. Then, select OK to allow the AMI BIOS to automatically load Optimal De- faults to the BIOS Settings. The Optimal settings are designed for maximum system performance, but may not work best for all computer applications.

Load Fail-Safe Defaults

To set this feature, select Load Fail-Safe Defaults from the Exit menu and press <Enter>. The Fail-Safe settings are designed for maximum system stability, but not for maximum performance.

4-19

Page 69
Image 69
SUPER MICRO Computer X7SLA-L, X7SLA-H user manual Save Changes and Exit, Discard Changes and Exit, Load Optimal Defaults

X7SLA-L, X7SLA-H specifications

Super Micro Computer has established itself as a leader in server and storage solutions, and their motherboards, particularly the X7SLA-H and X7SLA-L, showcase this commitment to quality and performance. These motherboards are designed for high efficiency and reliability, catering to a range of applications from entry-level servers to advanced computing environments.

The X7SLA-H and X7SLA-L are built on the Intel 5000 Series chipset, which allows them to leverage Intel's powerful Xeon processors. This enables users to experience superior performance, particularly in multi-threaded tasks, making them ideal for data-centric enterprises. Both motherboards support dual-socket configurations, increasing scalability and processing capabilities, which is essential for demanding workloads.

One of the standout features of the X7SLA series is its support for DDR2 ECC memory. This technology ensures data integrity by automatically correcting single-bit errors, a critical aspect for servers handling crucial data transactions. The X7SLA-H can support up to 16GB of memory, while its sibling, the X7SLA-L, is designed for maximum memory efficiency in less demanding environments. The incorporation of ECC memory is a significant advantage for businesses prioritizing reliability and uptime.

The X7SLA-H and X7SLA-L motherboards incorporate several advanced connectivity options. With multiple SATA ports and support for SATA RAID, they allow for flexible storage configurations that can enhance performance and reliability. These motherboards also provide users with Gigabit Ethernet ports, ensuring fast network communication essential for modern server environments.

Another noteworthy characteristic of the X7SLA series is its emphasis on thermal management. Both the X7SLA-H and X7SLA-L are designed with efficient cooling solutions to maintain optimal operating temperatures, which is crucial for sustaining the longevity of hardware components in high-availability scenarios.

In terms of expansion capabilities, the board features PCI Express slots, providing users with the flexibility to add additional network interfaces or storage controllers. This expandability aligns with Supermicro's commitment to delivering customizable solutions tailored to the specific needs of their customers.

In summary, the Super Micro Computer X7SLA-H and X7SLA-L motherboards bring together a robust architecture, reliable technologies, and extensive support for advanced computing needs. Their combination of performance, scalability, and reliability makes them a great choice for businesses looking to build efficient and powerful server solutions. These motherboards exemplify Supermicro's dedication to innovation in the computer hardware space, making them a staple in modern data centers.