period four

Fan Modulation

notes

Discharge Dampers

static pressure

discharge damper SP loss

B

actual system resistance curve

design system resistance curve

A

airflow

Figure 82

 

As the VAV terminal units modulate shut, the system resistance curve shifts upwards. The fan begins to “ride up” the constant-speed performance curve, from the design operating point (A), trying to reach the balance point with this new system resistance curve. As a result, the fan delivers a lower airflow at a higher static pressure.

The system static pressure controller senses this higher pressure and sends a signal to the discharge dampers, instructing them to begin closing. This has no effect on the performance curve for the fan, but it does add a new static- pressure loss to the system. This moves the system resistance curve back down to where the system balances at an operating point along the desired fan modulation curve (B). This brings the system static pressure back down to its set point.

Other methods are more energy efficient, so discharge dampers are rarely used for supply fan modulation.

TRG-TRC014-EN

59

Page 64
Image 64
Trane TRG-TRC014-EN manual Static pressure Discharge damper SP loss

TRG-TRC014-EN specifications

The Trane TRG-TRC014-EN is a comprehensive technical resource guide that serves as an essential tool for HVAC professionals and engineers looking to enhance their understanding of Trane's commercial HVAC systems. This guide provides an in-depth examination of Trane’s advanced technologies, key features, and design characteristics that position their products as industry leaders in heating, ventilation, and air conditioning.

One of the standout features of the TRG-TRC014-EN is its focus on energy efficiency. Trane continuously works on incorporating cutting-edge technologies that minimize energy consumption while maximizing performance. This includes the use of variable speed compressors and advanced control systems that adapt the HVAC operation according to real-time demand, significantly reducing energy costs for end users.

The guide also highlights Trane’s commitment to sustainable practices. The incorporation of environmentally friendly refrigerants and compliance with regulatory standards ensures that Trane units not only deliver comfort but also contribute to lower environmental impact. The guide provides detailed specifications on these refrigerants, allowing engineers to make informed decisions in line with environmental policies.

Another important aspect of the TRG-TRC014-EN is its technical information regarding system design and application. With comprehensive data on airflow, capacity calculations, and installation techniques, the guide serves as a valuable resource in the design phase of HVAC projects. This ensures that systems are optimized for performance and meet the specific needs of any given commercial space.

Additionally, the TRG-TRC014-EN addresses integration with smart building technologies. Trane units are designed to easily integrate with building management systems (BMS), enabling better monitoring and control of HVAC operations. This compatibility enhances operational efficiency and supports predictive maintenance, reducing downtime and servicing costs.

Moreover, the guide emphasizes Trane’s extensive warranty and service support. Understanding that customer satisfaction extends beyond the sale, Trane provides comprehensive service options that assure users of reliable and prompt support throughout the lifecycle of their HVAC systems.

In conclusion, the Trane TRG-TRC014-EN stands as an essential guide for HVAC professionals seeking to leverage Trane’s innovative technologies and design features. With a strong emphasis on energy efficiency, sustainability, technical accuracy, smart integration, and robust support, this guide underscores Trane's position as a leader in the HVAC industry.