1.2 Maximum Power

Products covered in this manual are limited to a maximum power of 360 MW. During set-up, primary voltage and current setting are checked and the unit will not accept entries that breach the 360 MW limit. This is covered in more detail in the sections that show primary voltage and current set-up. The Maximum Power restriction of 360 MW refer to 120% of nominal current and 120% of nominal voltage, i.e. 250 MW nominal system power.

1.3 Secondary Voltage

0240

0340

0440

0640

1000

1540

Most of the products described in this manual allow the user to specify, within a range, the secondary voltage of the potential transformer (PT) with which it is to be used. The exception is the Integra 1000 and self contained Integra 1540, which has the PT secondary factory set. On the Integra 1000/1540, the user cannot change this value.

1.4 Demand Calculation

0240

0340

0440

0640

1000

1540

The maximum power consumption of an installation is an important measurement, as most power utilities base their charges on it. Many utilities use a thermal maximum demand indicator (MDI) to measure this peak power consumption. An MDI averages the power consumed over a number of minutes, reflecting the thermal load that the demand places on the supply system.

The Integra uses a sliding window algorithm to simulate the characteristics of a thermal MDI instrument, with the demand being calculated once per minute.

The demand period can be reset, which allows synchronisation to other equipment. When it is reset, the values in the Demand and Maximum Demand registers are set to zero.

Demand Integration Times can be set to 8, 15, 20 or 30 minutes.

The number of sub-intervals, i.e. the demand time in minutes, can be altered either by using the Demand Integration Time set-up screen (see Section 3.8) or via the RS485 port, where available, using the ModbusTM protocol.

During the initial period, when the elapsed time since the demands were last reset or since the Integra was switched on is less than one minute, the maximum demands (current MaxAD and power MaxkWD) will remain at zero and not follow the instantaneous demands.

Maximum Demand is the maximum power or current demand that has occurred since the unit was last reset as detailed in Section 3.9 Resets.

Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03

9

Page 11
Image 11
Tyco 1540 manual Maximum Power, Secondary Voltage, Demand Calculation

1540 specifications

The Tyco 1540 is an innovative and versatile telecommunications solution that has gained popularity in various industries due to its robust features and state-of-the-art technology. Designed primarily for high-performance communication, the Tyco 1540 has become a go-to choice for service providers, enterprises, and data centers looking to enhance their network capabilities.

One of the main features of the Tyco 1540 is its advanced multiplexing technology. This allows for the efficient transmission of multiple data signals over a single optical fiber, maximizing bandwidth utilization and reducing infrastructure costs. The device supports a range of protocols, making it adaptable to various network environments and requirements.

The Tyco 1540 also incorporates automation capabilities, which significantly streamline network management and operational processes. With built-in monitoring and diagnostic tools, administrators can easily track performance metrics, troubleshoot issues, and optimize network resources in real-time, thus ensuring seamless communication and minimal downtime.

Another standout characteristic of the Tyco 1540 is its scalability. As businesses grow and their communication needs evolve, the Tyco 1540 can be adjusted to accommodate increased data traffic without needing extensive hardware upgrades. This scalability is essential for organizations that need to remain agile and responsive in an ever-changing technological landscape.

Security is a critical concern in telecommunications, and the Tyco 1540 addresses this with robust encryption protocols. This functionality safeguards sensitive data transmitted across the network, providing peace of mind for organizations handling confidential information. Moreover, the device is designed to comply with industry standards and regulations, ensuring that users meet necessary compliance requirements.

Energy efficiency is another notable aspect of the Tyco 1540. The device is engineered to consume less power, reducing operational costs and minimizing the environmental impact. The incorporation of energy-saving technologies reflects a commitment to sustainable practices, which is increasingly important in today's eco-conscious world.

In conclusion, the Tyco 1540 represents a significant advancement in telecommunications technology. Its features, including advanced multiplexing, automation capabilities, scalability, enhanced security, and energy efficiency, make it an ideal choice for a wide range of applications. Organizations looking to improve their communication infrastructure can certainly benefit from integrating the Tyco 1540 into their systems. With its robust performance and adaptability, the Tyco 1540 stands out as a leading solution in the evolving telecommunications landscape.