Cisco Systems 15600 manual DLP-E114 Provision Section DCC Terminations, 17-14

Page 14

Chapter 17 DLPs E100 to E199

DLP- E114 Provision Section DCC Terminations

DLP-E114 Provision Section DCC Terminations

Purpose

This task creates SONET Section DCC terminations required for alarms,

 

administration data, signal control information, and messages.

Tools/Equipment

None

Prerequisite Procedures

DLP-E26 Log into CTC, page 16-33

Required/As Needed

As needed

Onsite/Remote

Onsite or remote

Security Level

Provisioning or higher

Step 1 In node view, click the Provisioning > Comm Channels > SDCC tabs.

Step 2 In the SDCC Terminations area, click Create.

Step 3 In the Create SDCC Terminations dialog box, click the ports where you want to create the DCC termination. To select more than one port, press the Shift key or the Ctrl key.

Note SDCC refers to the Section DCC, which is used for ONS 15600 DCC terminations. You can provision the SONET Line DCCs and SDCCs (when not used as a DCC termination by the ONS 15600) as DCC tunnels. See the “DLP-E105 Create a DCC Tunnel” task on page 17-5. You can provision SDCC and Line DCC on the same port but it is not recommend. SDCC and Line DCC are only needed on the same port during a software upgrade if the software version does not support SDCC. Provision Line DCC termination on the port that already has SDCC see “DLP-E189 Provision Line DCC Terminations” task on page 17-70. Delete SDCC provisioned on that port, see “DLP-E198 Delete a Section DCC Termination” task on page 17-76. Enable OSPF on the Line DCC termination if not enabled see “DLP-E197 Change a Line DCC Termination” task on page 17-75.

Step 4 In the Port Admin State area, click Set to IS to put the port in service.

Step 5 Verify that the Disable OSPF on SDCC Link is unchecked.

Step 6 If the SDCC termination is to include a non-ONS node, check the Far End is Foreign check box. This automatically sets the far-end node IP address to 0.0.0.0, which means that any address can be specified by the far end. To change the default to a specific the IP address, see the “DLP-E196 Change a Section DCC Termination” task on page 17-75.

Step 7 In the Layer 3 box, perform one of the following:

Check the IP box only—if the SDCC is between the ONS 15600 and another ONS node and only ONS nodes reside on the network. The SDCC will use PPP (point-to-point protocol).

Check the IP and OSI boxes—if the SDCC is between the ONS 15600 and another ONS node and third party NEs that use the Open System Interconnection (OSI) protocol stack are on the same network. The SDCC will use PPP.

Check OSI box only—if the SDCC is between an ONS node and a third party NE that uses the OSI protocol stack. The SDCC will use the LAP-D protocol.

Note If OSI is checked and IP is not checked (LAP-D), no network connections will appear in network view.

Cisco ONS 15600 Procedure Guide, R8.0

17-14

Image 14
Contents 17-1 DLP-E101 Apply a Lock On in a 1+1 Group 17-2DLP-E102 Apply a Lockout in a 1+1 Group 17-317-4 17-5 DLP-E105 Create a DCC TunnelNetwork view, click the Provisioning Overhead Circuits tabs DLP-E106 Clean Fiber Connectors 17-6DLP-E107 Clean the Fiber Adapters 17-7DLP-E108 Verify that a 1+1 Working Port is Active 17-817-9 17-10 Bolt Hole PatternDLP-E110 Assign a Name to a Port 17-1117-12 17-13 DLP-E114 Provision Section DCC Terminations 17-1417-15 17-16 DLP-E115 Change the Service State for a PortClick the Provisioning Line tabs 17-17 DLP-E116 Remap the K3 ByteDLP-E119 Set Auto-Refresh Interval for Displayed PM Counts DLP-E120 Remove the Narrow CRMs 17-1817-19 DLP-E122 Manual Switch the Node Timing Reference 17-20DLP-E123 Clear a Manual Switch on a Node Timing Reference 17-21Click the Provisioning Sonet Thresholds tabs DLP-E124 Set the Optical Power Received Nominal ValueDLP-E125 Provision the Iiop Listener Port on the ONS 17-2217-23 DLP-E127 Edit Path Protection Circuit Path Selectors 17-2417-25 17-26 DLP-E129 Enable Dialog Box Do-Not-Display OptionDLP-E130 Change Security Policy on a Single Node DLP-E131 Change Security Policy on Multiple Nodes 17-2717-28 17-29 DLP-E136 Log Out a User on Multiple Nodes Click the Provisioning Security Active Logins tabsDLP-E135 Log Out a User on a Single Node 17-30DLP-E137 Check the Network for Alarms and Conditions 17-3117-32 DLP-E142 Install the Narrow CRMs 17-33DLP-E143 Install the Wide CRMs 17-3417-35 CRM Screw Holes Front17-36 DLP-E145 Connect the PDU Ground Cables to the PDU 17-37Power Terminal Block Right Side Shown 17-38DLP-E146 Install Isolated Logic Ground 17-3917-40 DLP-E150 Clear a Blsr Force Ring SwitchClick the Provisioning Blsr tabs DLP-E152 Install Public-Key Security Certificate 17-4117-42 CTC Preferences Dialog BoxDLP-E154 Delete Alarm Severity Profiles 17-43DLP-E155 Enable Alarm Filtering 17-4417-45 Conditions Window Filter Dialog BoxDLP-E156 Modify Alarm and Condition Filtering Parameters 17-4617-47 DLP-E157 Disable Alarm FilteringDLP-E158 Manually Lock or Unlock a User on a Single Node 17-48 DLP-E159 Manually Lock or Unlock a User on Multiple NodesClick the Provisioning Security Users tabs Click the Provisioning Line tab DLP-E161 Single Shelf Control Card Switch TestDLP-E160 Verify Blsr Extension Byte Mapping 17-4917-50 DLP-E163 Delete Circuits 17-5117-52 Click the Maintenance Protection tabsDLP-E165 Change an OC-N Card 17-53 17-54 DLP-E169 Initiate a Lockout on a Path Protection PathLockout of Protection 17-55 DLP-E171 Verify Fan OperationClick the Circuits Circuits tabs 17-56 ONS 15600 Shelf with One Fan Tray and Air Filter Removed17-57 17-58 Click the Provisioning Overhead Circuits tabs DLP-E177 Change Tunnel TypeDLP-E178 Delete Overhead Circuits 17-59DLP-E179 Repair an IP Tunnel 17-60J1 Function Cards 17-6117-62 Selecting the Edit Path Trace Option17-63 17-64 DLP-E181 Provision Path Trace on OC-N PortsClick Circuits Click Create Group DLP-E182 Create Login Node GroupsClick the Login Node Group tab 17-65Tools 17-66DLP-E185 Change the JRE Version 17-67DLP-E186 Remove Pass-through Connections 17-6817-69 DLP-E187 Delete a Node from a Specified Login Node GroupDLP-E188 Change a Circuit Service State DLP-E189 Provision Line DCC Terminations 17-70Node view, click the Provisioning Comm Channels Ldcc tabs 17-7117-72 DLP-E190 Provision a Proxy TunnelClick the Provisioning Network Proxy subtabs 17-73 DLP-E191 Provision a Firewall TunnelClick the Provisioning Network Firewall subtabs 17-74 DLP-E192 Delete a Proxy TunnelDLP-E193 Delete a Firewall Tunnel Click the Provisioning Comm Channels Sdcc tabs DLP-E196 Change a Section DCC TerminationDLP-E197 Change a Line DCC Termination 17-75Click the Provisioning Comm Channel Sdcc tabs DLP-E198 Delete a Section DCC TerminationDLP-E199 Delete a Line DCC Termination 17-7617-77 17-78

15600 specifications

Cisco Systems 15600 is a powerful network router designed to meet the growing demands of enterprise and service provider networks. Equipped with advanced features and cutting-edge technology, the 15600 caters to a range of applications, from data centers to branch offices, supporting the evolving landscape of cloud computing and Internet of Things (IoT).

One of the standout features of the Cisco 15600 is its scalability. The router is built to handle increasing bandwidth requirements, making it ideal for environments where traffic is expected to grow. It supports a range of interface modules, allowing organizations to tailor their network connectivity according to their specific needs. This modular design not only ensures flexibility but also future-proofs the investment, as additional capacity can be added as network demands increase.

Cisco’s 15600 also incorporates advanced security features, such as built-in firewalls and support for secure VPN connections. This is crucial for businesses that prioritize data protection and need to safeguard their information against cyber threats. The router also supports multiple encryption protocols, allowing organizations to implement robust security measures without sacrificing performance.

With regard to performance, the 15600 offers high throughput rates, which are essential for handling large volumes of traffic efficiently. This enhanced performance is further supported by Cisco's innovative technologies, such as Application-Specific Integrated Circuits (ASICs) that optimize data processing. Additionally, the router utilizes Cisco’s Intelligent WAN (iWAN) capabilities, which enhance the overall performance and efficiency of WAN connections.

Another key characteristic of the 15600 is its support for software-defined networking (SDN). This enables organizations to automate network management, reduce operational costs, and improve agility in deploying applications. Using Cisco's software solutions, network administrators can manage the router through a centralized interface, simplifying operations and enhancing visibility into network performance.

Furthermore, the Cisco 15600 is designed with energy efficiency in mind. Its architecture minimizes power consumption while maintaining high performance levels, contributing to sustainability goals and reducing operational costs over time.

Overall, the Cisco Systems 15600 router stands out as a robust networking solution, offering unmatched scalability, security, performance, and operational efficiency. As organizations increasingly turn to cloud-based solutions and IoT devices, the capabilities of the 15600 position it as a critical component in modern network infrastructures.