Cisco Systems 15600 manual 17-4

Page 4

Chapter 17 DLPs E100 to E199

DLP- E104 Initiate a Force Switch to a Path Protection Circuit

Step 2 Click the path you want to switch and then click Edit.

Step 3 In the Edit Circuit window, click the Path Protection Selectors tab.

Step 4 In the Switch State column, click the row for the path you want to switch and select Manual to Protect or Manual to Working as appropriate.

Step 5 Click Apply.

Step 6 To verify that the switch has occurred, view the Path Protection Selectors tab Switch State column. The row for the circuit you switched will show a MANUAL status.

Traffic switches from the working path protection to the protect path. If the path is configured for revertive switching, the traffic reverts to the working path when the Manual switch is cleared. See the “DLP-E170 Clear a Switch or Lockout on a Path Protection Circuit” task on page 17-55as needed.

Step 7 Return to your originating procedure (NTP).

DLP-E104 Initiate a Force Switch to a Path Protection Circuit

 

Purpose

This task switches traffic to the working path protection circuit using a

 

 

Force switch. A Force switch will switch traffic even if the path has

 

 

signal degrade (SD) or signal fail (SF) conditions. A Force switch has a

 

 

higher priority than a Manual switch.

 

Tools/Equipment

None

 

Prerequisite Procedures

DLP-E26 Log into CTC, page 16-33

 

Required/As Needed

As needed

 

Onsite/Remote

Onsite or remote

 

Security Level

Provisioning or higher

 

 

Step 1

In node view, click the Circuits > Circuits tabs.

Step 2

Click the path you want to switch and click Edit.

Step 3

In the Edit Circuit window, click the Path Protection Selectors tab.

Step 4

In the Switch State column, click the row for the path you want to switch and select Force to Working

 

or Force to Protect as appropriate.

Step 5

Click Apply.

 

Step 6

To verify that the switch has occurred, view the Path Protection Selectors tab Switch State column. The

 

circuit row shows a FORCE status.

 

Traffic switches from the protect path to the working path. Protection switching cannot occur until the

 

Force switch is cleared. See the “DLP-E170 Clear a Switch or Lockout on a Path Protection Circuit” task

 

on page 17-55as needed.

 

Step 7

Return to your originating procedure (NTP).

 

 

 

Cisco ONS 15600 Procedure Guide, R8.0

17-4

Image 4
Contents 17-1 DLP-E101 Apply a Lock On in a 1+1 Group 17-2DLP-E102 Apply a Lockout in a 1+1 Group 17-317-4 Network view, click the Provisioning Overhead Circuits tabs DLP-E105 Create a DCC Tunnel17-5 DLP-E106 Clean Fiber Connectors 17-6DLP-E107 Clean the Fiber Adapters 17-7DLP-E108 Verify that a 1+1 Working Port is Active 17-817-9 17-10 Bolt Hole PatternDLP-E110 Assign a Name to a Port 17-1117-12 17-13 DLP-E114 Provision Section DCC Terminations 17-1417-15 Click the Provisioning Line tabs DLP-E115 Change the Service State for a Port17-16 DLP-E119 Set Auto-Refresh Interval for Displayed PM Counts DLP-E116 Remap the K3 Byte17-17 DLP-E120 Remove the Narrow CRMs 17-1817-19 DLP-E122 Manual Switch the Node Timing Reference 17-20DLP-E123 Clear a Manual Switch on a Node Timing Reference 17-21DLP-E124 Set the Optical Power Received Nominal Value DLP-E125 Provision the Iiop Listener Port on the ONSClick the Provisioning Sonet Thresholds tabs 17-2217-23 DLP-E127 Edit Path Protection Circuit Path Selectors 17-2417-25 DLP-E130 Change Security Policy on a Single Node DLP-E129 Enable Dialog Box Do-Not-Display Option17-26 DLP-E131 Change Security Policy on Multiple Nodes 17-2717-28 17-29 Click the Provisioning Security Active Logins tabs DLP-E135 Log Out a User on a Single NodeDLP-E136 Log Out a User on Multiple Nodes 17-30DLP-E137 Check the Network for Alarms and Conditions 17-3117-32 DLP-E142 Install the Narrow CRMs 17-33DLP-E143 Install the Wide CRMs 17-3417-35 CRM Screw Holes Front17-36 DLP-E145 Connect the PDU Ground Cables to the PDU 17-37Power Terminal Block Right Side Shown 17-38DLP-E146 Install Isolated Logic Ground 17-39Click the Provisioning Blsr tabs DLP-E150 Clear a Blsr Force Ring Switch17-40 DLP-E152 Install Public-Key Security Certificate 17-4117-42 CTC Preferences Dialog BoxDLP-E154 Delete Alarm Severity Profiles 17-43DLP-E155 Enable Alarm Filtering 17-4417-45 Conditions Window Filter Dialog BoxDLP-E156 Modify Alarm and Condition Filtering Parameters 17-46DLP-E158 Manually Lock or Unlock a User on a Single Node DLP-E157 Disable Alarm Filtering17-47 Click the Provisioning Security Users tabs DLP-E159 Manually Lock or Unlock a User on Multiple Nodes17-48 DLP-E161 Single Shelf Control Card Switch Test DLP-E160 Verify Blsr Extension Byte MappingClick the Provisioning Line tab 17-4917-50 DLP-E163 Delete Circuits 17-51DLP-E165 Change an OC-N Card Click the Maintenance Protection tabs17-52 17-53 Lockout of Protection DLP-E169 Initiate a Lockout on a Path Protection Path17-54 Click the Circuits Circuits tabs DLP-E171 Verify Fan Operation17-55 17-56 ONS 15600 Shelf with One Fan Tray and Air Filter Removed17-57 17-58 DLP-E177 Change Tunnel Type DLP-E178 Delete Overhead CircuitsClick the Provisioning Overhead Circuits tabs 17-59DLP-E179 Repair an IP Tunnel 17-60J1 Function Cards 17-6117-62 Selecting the Edit Path Trace Option17-63 Click Circuits DLP-E181 Provision Path Trace on OC-N Ports17-64 DLP-E182 Create Login Node Groups Click the Login Node Group tabClick Create Group 17-65Tools 17-66DLP-E185 Change the JRE Version 17-67DLP-E186 Remove Pass-through Connections 17-68DLP-E188 Change a Circuit Service State DLP-E187 Delete a Node from a Specified Login Node Group17-69 DLP-E189 Provision Line DCC Terminations 17-70Node view, click the Provisioning Comm Channels Ldcc tabs 17-71Click the Provisioning Network Proxy subtabs DLP-E190 Provision a Proxy Tunnel17-72 Click the Provisioning Network Firewall subtabs DLP-E191 Provision a Firewall Tunnel17-73 DLP-E193 Delete a Firewall Tunnel DLP-E192 Delete a Proxy Tunnel17-74 DLP-E196 Change a Section DCC Termination DLP-E197 Change a Line DCC TerminationClick the Provisioning Comm Channels Sdcc tabs 17-75DLP-E198 Delete a Section DCC Termination DLP-E199 Delete a Line DCC TerminationClick the Provisioning Comm Channel Sdcc tabs 17-7617-77 17-78

15600 specifications

Cisco Systems 15600 is a powerful network router designed to meet the growing demands of enterprise and service provider networks. Equipped with advanced features and cutting-edge technology, the 15600 caters to a range of applications, from data centers to branch offices, supporting the evolving landscape of cloud computing and Internet of Things (IoT).

One of the standout features of the Cisco 15600 is its scalability. The router is built to handle increasing bandwidth requirements, making it ideal for environments where traffic is expected to grow. It supports a range of interface modules, allowing organizations to tailor their network connectivity according to their specific needs. This modular design not only ensures flexibility but also future-proofs the investment, as additional capacity can be added as network demands increase.

Cisco’s 15600 also incorporates advanced security features, such as built-in firewalls and support for secure VPN connections. This is crucial for businesses that prioritize data protection and need to safeguard their information against cyber threats. The router also supports multiple encryption protocols, allowing organizations to implement robust security measures without sacrificing performance.

With regard to performance, the 15600 offers high throughput rates, which are essential for handling large volumes of traffic efficiently. This enhanced performance is further supported by Cisco's innovative technologies, such as Application-Specific Integrated Circuits (ASICs) that optimize data processing. Additionally, the router utilizes Cisco’s Intelligent WAN (iWAN) capabilities, which enhance the overall performance and efficiency of WAN connections.

Another key characteristic of the 15600 is its support for software-defined networking (SDN). This enables organizations to automate network management, reduce operational costs, and improve agility in deploying applications. Using Cisco's software solutions, network administrators can manage the router through a centralized interface, simplifying operations and enhancing visibility into network performance.

Furthermore, the Cisco 15600 is designed with energy efficiency in mind. Its architecture minimizes power consumption while maintaining high performance levels, contributing to sustainability goals and reducing operational costs over time.

Overall, the Cisco Systems 15600 router stands out as a robust networking solution, offering unmatched scalability, security, performance, and operational efficiency. As organizations increasingly turn to cloud-based solutions and IoT devices, the capabilities of the 15600 position it as a critical component in modern network infrastructures.