Delta Electronics SS1-UM-1.05 user manual File Saving, Hot Keys

Page 19

You will go through these different combinations later in the tutorial, and there is also a route map in the Menus and Screens section.

These settings can be stored as a Configuration. Saving a number of configurations enables you to switch quickly between the different set-ups necessary at different sites, or when analysing the canopy of different crops with different characteristics.

Note: The Workabout’s file structure is very similar to a standard DOS system. Files, such as SunData configuration and data files, are stored in hierarchical sub- directories either in the Internal Disk (part of the Workabout memory configured as a disk, called drive M), or on the Solid State Disks (SSDs) A and B.

Press Menu, File, Save Config’n. Type in an appropriate Name for the configuration. This will save it into the \SUN\ directory on the Internal disk, which for the moment will be satisfactory.

Note: The Tab key is very useful when setting options generally - it pops up a scrollable list of all the options available. It is particularly important when saving and loading files, as it calls up a full list of all existing files and directories for you to scroll through. Use On/Esc to exit from these directories.

Since you are just about to start taking readings, you also need to tell SunData the name of the file you want to use for storing the data, and what file format you want the readings to be stored in.

Press Menu, File, Data Storage, Enter. The default file setting is A:\DATA.PRN. This will give you an easily Printable text file. If you prefer to work with spreadsheets, choose the data file type Comma separated. For the Disk, specify A, and for the moment ignore B and C. Do not put data files into the internal memory: the space there is needed for other things.

File Saving

As soon as you have opened a data file, the SunData program looks after it for you. The file will be automatically saved whenever you exit the SunData program or when the Workabout is switched off. When SunData is re-started, the most recently used file is automatically re-opened. New data will be appended to it - not overwriting earlier data.

If you want to start a new file, type a new file name in the Store data to sub-screen.

"Hot Keys"

You may have noticed in the menus that many of the commands have a short-cut or Hot Key combination, for example the dialog box obtained by Menu, File, Data Storage, Enter can be invoked from the main SunData program simply by pressing

+D.

Try these out from time to time as you become more familiar with SunData program. Note however that if you are already in a dialog box, you will need to On/Esc from it before the Hot Key will work.

SunScan User Manual v 1.05

SunScan Tutorial 19

Image 19
Contents SS1-UM-1.05 SunScanCE conformity CopyrightAcknowledgements TrademarksContents Technical Reference section Menus and Screens More Psion and file handling notesMeasurement options LAI theoryIndex AppendicesOrganisation of this manual How to use the manualsIntroduction SunScan Canopy Analysis SystemData Collection Terminal Field accessoriesSunScan probe Beam Fraction sensorPreliminary checks Getting StartedWorkabout and SunScan probe Checking the Workabout hardware What the s/w does Installing the SunData s/w in your PCInstalling the s/w SunData s/w DisketteRunning SunData Setting up your PCs COM portSunScan probe to PC Communication checksWorkabout to PC Running SunData in Windows About this tutorial SunScan TutorialWorking with the Workabout Starting SunData in the Workabout What to do if you get lostStarting the PC software Using a PC instead of the WorkaboutThis page is intentionally blank Working through the menu options Setting up a measurement sessionHot Keys File SavingTaking readings Using the Emulator modeWithout a Beam Fraction Sensor Connecting the SunScan probeConnecting the Beam Fraction Sensor Measuring Leaf Area Index without a Beam Fraction Sensor Averages Reviewing your data fileFrom the Workabout Transferring the data file to your PCTo the PC Initiating the file transfer from the Workabout Meanwhile, on the PC Conclusion of the Tutorial RS232 communication problemsSunData Screens on the Workabout Menus and Screens SettingsFile Utils ContdQuit Navigating the Psion directories and screens More Psion and file handling notesNavigating Psion directories and screens Workabout User GuidePsion subdirectory usage in file select dialogs Deleting unwanted Workabout files Re-installing the SunData application iconFlashcards reformatting SunData Configuration files Configuration and data file handlingData memory management Data files Default .cfgCreating a configuration file Restoring a configuration.PRN file Displaying data files on your PC.CSV file Data file layouts and data groups Page Experiment design Measurement optionsAbove-canopy reference requirements Canopy type and BFS practicalities Canopy Sampling volumeCanopy type and LAI estimates Planning for the sun’s position Preferred light and weather conditionsSetting Eladp Advice on Absorption and Eladp valuesAbsorption Estimating Eladp in the field Relationship between Mean Leaf Angle and EladpSunScan System Measurement modes Workabout setupLAI, PAR and All displays Autolog function Levelling the probe Measurement procedures in the fieldProbe handling in the field Probe GO buttonWorkabout Using the tripodBFS handling in the field Use of the tripodLevelling the BFS Finding North, and setting the shade ringExtension cables, and the location of the BFS Recalibrate option PAR calibrationsFactory light calibration Checking the probe/BFS matchingComparing the calibration with other PAR sensors Routine maintenance and cleaningRestoring the factory calibration Effect of the shade ring on the BFSSunScan probe and Beam Fraction Sensor Environmental and moisture protectionIngredients of the LAI computation method LAI theoryMajor assumptions Derivation of Wood’s SunScan canopy analysis equationsTheory versus reality Campbells Ellipsoidal LAD equations Beers law for canopy absorptionTransmission of Diffuse Light Transmission fraction τ Is given by I/I0 Diffuse light transmission cosine corrected sensor Modelling the canopy transmissionDetail Diffuse light hemispherical response sensor Functions used to model canopy transmissionAccuracy of LAI calculations Diffuse light cosine response sensorExp 0.1 . x . atan 0.9 Atan L Q Spher Modelling incomplete PAR absorption and scatteringCalculating zenith angles Scientific referencesSummary Jones, Hamlyn G Plants and Microclimate second edition. CUP SunScan probe batteries Maintenance and repairTechnical Reference section Checking the batteriesChecking the desiccant Checking the PAR calibration Re-setting the factory calibrationFactory calibration method While running SunData TroubleshootingProblems running the SunData application Psion WorkaboutInsufficient power to write data reported Technical Support Data Collection Terminal type DCT1 Psion Workabout SpecificationsSunScan Probe Type SS1 Beam Fraction Sensor type BF1Logging Cables Carrying Case type SCC1Telescopic Tripod type BFT1 Spares Kit type SPS1Spectral response PAR PerformanceSunScan system cosine response Cosine responses of probe and BFSLogging the probe as a Linear Quantum Sensor AppendicesLogging the Beam Fraction sensor Revision History Upgrading the SunScan systemSunData PC s/w Workabout SunData s/wWorkabout Remote Link File transfer between Workabout and PCChoice of different programs PsiWinSlink and Rcom Example using SlinkDrives on the PC are referred to as REMA, Remc REM = remote Documentation of Rcom and Slink Example using RcomSending a file to a serial printer Using the Workabout Comms applicationAlternative file transfer mechanisms Sending a file to a Communication programGlossary Page Accuracy IndexIndex Field use 39, 46, 48, 50, 51, 58

SS1-UM-1.05 specifications

Delta Electronics has long been recognized for its innovative solutions in power and thermal management technologies. One of its notable products is the SS1-UM-1.05, a compact and efficient power supply module designed to meet the needs of a variety of applications, from industrial automation to telecommunications.

The Delta SS1-UM-1.05 is a key component in the company’s extensive portfolio, providing reliable and stable power supply for both demanding and sensitive electronic equipment. One of the main features of this module is its high efficiency, which typically exceeds 90%. This not only minimizes energy consumption but also reduces heat generation, making it an ideal choice for applications where thermal management is crucial.

Another significant characteristic of the SS1-UM-1.05 is its wide input voltage range, which allows it to operate effectively in various environments. The module supports a voltage range from 90 to 264 VAC, ensuring consistent performance even in fluctuating supply conditions. This versatility makes it well-suited for global applications, accommodating different electrical standards and requirements.

The SS1-UM-1.05 also boasts a compact footprint, which is essential for space-constrained installations. Its design emphasizes not only performance but also ease of integration into existing systems. The module provides multiple output voltage options, allowing it to cater to specific power requirements, whether it be for industrial machinery or consumer electronics.

In terms of technologies, the SS1-UM-1.05 incorporates advanced power conversion technologies that enhance its overall performance. It features overload protection and thermal shutdown mechanisms to safeguard both the module and the equipment it powers from potential damages due to electrical faults. Moreover, it has low electromagnetic interference (EMI) emissions, which is crucial for environments sensitive to electrical noise.

The SS1-UM-1.05 is also designed with a robust enclosure that adheres to stringent safety and environmental standards. This enhances its durability and reliability, ensuring it can withstand harsh operating conditions. With these features, Delta Electronics demonstrates its commitment to delivering high-quality products that meet the evolving needs of industries worldwide.

Overall, the Delta SS1-UM-1.05 power supply module is an exemplary solution for those seeking a reliable, efficient, and compact power source. Its advanced features and technologies make it an indispensable component in modern electronic systems.