Agilent Technologies 669xA, 665xA, 664xA Prerequisites for Using this Guide, Accessing Online Help

Page 8

Prerequisites for Using this Guide

This organization of this guide assumes that you know or can learn the following information:

1.How to program in your controller language (Agilent BASIC, QUICKBASIC, C, etc.).

2.The basics of the GPIB (IEEE 488).

3.How to program I/O statements for an IEEE 488 bus instrument. From a programming aspect, the power supply is simply a bus instrument.

4.How to format ASCII statements within you I/O programming statements. SCPI commands are nothing more than ASCII data strings incorporated within those I/O statements.

5.The basic operating principles of the power supply as explained in “Chapter 5 – Front Panel Operation” of the Operating Guide.

6.How to set the GPIB address of the power supply. This cannot be done remotely, but only from the supply’s front panel (see System Considerations in “Chapter 2 – Remote Programming”).

VXIplug&play Power Product Instrument Drivers

VXIplug&play instrument drivers for Microsoft Windows 95 and Windows NT are now available on the Web at http://www.agilent.com/find/drivers. These instrument drivers provide a high-level programming interface to your Agilent Technologies instrument. VXIplug&play instrument drivers are an alternative to programming your instrument with SCPI command strings. Because the instrument driver's function calls work together on top of the VISA I/O library, a single instrument driver can be used with multiple application environments.

Supported Applications

System Requirements

a

Agilent VEE

The VXIplug&play Power Products instrument driver

a

Microsoft Visual BASIC

complies with the following:

a

Microsoft Visual C/C++

a

Microsoft Windows 95

a

Borland C/C++

a

Microsoft Windows NT

a

National Instruments LabVIEW

a

HP VISA revision F.01.02

a

National Instruments LabWindows/CVI

a

National Instruments VISA 1.1

Downloading and Installing the Driver

NOTE: Before installing the VXIplug&play instrument driver, make sure that you have one of the supported applications installed and running on your computer.

1.Access Agilent Technologies' Web site at http://www.agilent.com/find/drivers.

2.Select the instrument for which you need the driver.

3.Click on the driver, either Windows 95 or Windows NT, and download the executable file to your pc.

4.Locate the file that you downloaded from the Web. From the Start menu select Run <path>:\agxxxx.exe - where <path> is the directory path where the file is located, and agxxxx is the instrument driver that you downloaded .

5.Follow the directions on the screen to install the software. The default installation selections will work in most cases. The readme.txt file contains product updates or corrections that are not documented in the on-line help. If you decide to install this file, use any text editor to open and read it.

6.To use the VXIplug&play instrument driver, follow the directions in the VXIplug&play online help under “Introduction to Programming”.

Accessing Online Help

A comprehensive online programming reference is provided with the driver. It describes how to get started using the instrument driver with Agilent VEE, LabVIEW, and LabWindows. It includes complete descriptions of all function calls as well as example programs in C/C++ and Visual BASIC.

aTo access the online help when you have chosen the default Vxipnp start folder, click on the Start button and select Programs Vxipnp Agxxxx Help (32-bit).

- where agxxxx is the instrument driver.

8 Introduction

Image 8
Contents Programming Guide Gpib DC Power Supplies Agilent Part No Microfiche Part No JulySafety Guidelines Printing HistoryContents Description of Subsystem Commands System CommandsCurrent Subsystem Display SubsystemCommand Summary Programming Parameters Power Supply Status Structure Operation Status GroupVoltage Subsystem Questionable Status GroupPage General Information About this GuideDocumentation Summary User’s GuidePrerequisites for Using this Guide VXIplug&play Power Product Instrument DriversDownloading and Installing the Driver Accessing Online HelpGpib Capabilities Of The Power Supply Remote ProgrammingIntroduction To Scpi ConventionsTypes of Scpi Commands Scpi MessagesStructure of a Scpi Message Voltlev 4.5PROT 4.8CURR?NLVoltlev 4.5 Prot 4.8 CURR? Parts of a Scpi MessageVolt LEV Prot Curr Traversing the Command Tree Query IndicatorMessage Unit Separator Root SpecifierEffect of Optional Headers Moving Among SubsystemsOutputprotectionclear STATUSOPERATIONCONDITION? OUTPUTPROTECTIONCLEARSTATUSOPERATIONCONDITION?Including Common Commands Scpi QueriesValue Coupling Scpi Data FormatsExamples Controlling the Output Programming Status Saving and Recalling StatesWriting to the Display System Considerations Programming the Digital I/O PortGpib Address DigdataAction Display Shows Assigning the Gpib Address In ProgramsError Handling DOS DriversAgilent Basic Controllers Sample Program CodeProgramming Some Power Supply Functions Iout = OUTPUTS2Call Ioenter PS,OEVENT SPOL%=O While C O Language Dictionary IntroductionDescription Of Common Commands Common Commands Syntax DiagramCLS ESEOPC ESR?IDN? OPC? OPT?PSC PSC 0 *PSCCommand Syntax RCL NRf Parameters Example Query Syntax None Related CommandsRCL PSC *RST *SAVSAV RSTSAV Bit Configuration of Status Byte Register SRESTB? SREWAI TRGTST? Description of Subsystem Commands Calibration CommandsAbor AborCurrprotstat Current SubsystemCurr Currtrig Display Subsystem DigdataDisp Digdata 7 DigitaldatavalueDisptext Defaultmode DispmodeDisptext Dispmode Norm Displaymode Normal Displaywindowmode TextInitiate Subsystem Measure SubsystemInit Initcont MEASCURR? MEASVOLT?Outpprotcle Outpprotdel Output SubsystemOutp Outprel OutprelpolOutprel 1 Outprel OFF Outprelpol NormStatus Subsystem StatpresStatus Operation Registers STATOPER?STATUSOPERATIONENABLE? StatoperenabStatoper NTR Statoper PTR Statoperenab 1312 StatoperenabStatus Questionable Registers STATQUES?STATQUESCOND? StatquesenabSystem Commands SYSTERR? SYSTEMERROR?Statques NTR Statques PTR SYSTERR?Trigger Subsystem SystlangSYSTVERS? TrigVoltage Subsystem TrigsourVolt Volttrig Trigsour BUS Triggersource BUSCommand Summary Command SummaryCommand Parameters Subsystem Commands VoltprotCommand Parameters Common Commands ParametersProgramming Parameters Currlevtrig MAXVoltlevtrig MAX Voltprot MAXPage Power Supply Status Structure Register CommandsStatus Reporting Operation Status GroupCAL WTGUNR OPCStatus Questionable Commands Register Query Cleared By Questionable Status GroupStandard Event Status Group STATQUESNTR?Service Request Enable Register Initial Conditions At Power OnStatus Byte Register Output QueuePON Power-On Bit Servicing an Operation Status Mode EventDefault Power On Register States Condition Caused By StatpreServicing Questionable Status Events Monitoring Both Phases of a Status TransitionAdding More Operation Events Scpi Command Completion DFI Discrete Fault IndicatorRI Remote Inhibit WAIPage Error Messages Power Supply Hardware Error MessagesCalibration Error Messages System Error MessagesSummary of System Error Messages Error Error String Description/Explanation/Examples NumberScpi Confirmed Commands1 Scpi Approved CommandsScpi Conformance Information Scpi VersionNON-SCPI Commands1 Compatibility Language Compatibility LanguageParallel Polling Volt CurrVSET? ISET? CURR? VOUT?Hold OFF VolttrigHold CurrtrigFAULT? UNMASK?SRQ OFF SRQIndex IndexOperation status group, 51 optional header Trig SOUR, 46 VOLT, 46 Volt PROT, 47 Volt Trig United States Latin America Canada Australia/New ZealandEurope Asia Pacific Japan
Related manuals
Manual 142 pages 24.05 Kb Manual 67 pages 46.05 Kb

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.