Intel 8085, 8080 manual FOCC= OOnn

Page 32

Error Messages

8080/8085 Assembler

When error number 24 occurs, an additional message is output to the console:

FOCC= OOnn

where nn has the following meanings:

01 Deleted record.

02CRC error (data field).

03Invalid address mark.

04Seek error.

08Address error.

OA CRC error (ID field). OE No address mark.

OF Incorrect data address mark.

10Data overrun or data underrun.

20Write protect.

40Write error.

80Not ready.

7-4

Image 32
Contents ISIS-II 8080/8085 Macro Assembler Operatorsmanual Scope Prefacei Page Contentsi Page Chapter Assembler Overview ISIS-II Assembler EnvironmentInput/Output Files Symbol-Cross-Reference File Assembler FilesPage Chapter ISIS·IIAssembler Controls Primary Controls General Controls ISIS-II Assembler Control Lines Page Sample Assembly Activation SequenceAsmbo MBADD.SRC Symbols Xref Macrofile Reducing Assembly Time Page Chapter List File Formats List File Formats 808O/808S Assembler Assembly Output Line Symbol Table Listing Symbol-Cross-Reference Listing Cross-Reference Output LineChapter PL/M Linkage Conventions Page Absolute Programs Relocatable ProgramsPage Error Detection and Reporting Error CodesError Messqes ISIS-II Error Messages FOCC= OOnn Request for Readerscomments 111111
Related manuals
Manual 96 pages 34.66 Kb Manual 262 pages 56.67 Kb Manual 160 pages 43.4 Kb

8080, 8085 specifications

The Intel 8085 and 8080 microprocessors were groundbreaking innovations in the world of computing, paving the way for future microprocessor development and personal computing.

The Intel 8080, introduced in 1974, was an 8-bit microprocessor that played a fundamental role in the early days of personal computing. With a 16-bit address bus, it had the capability to address 64 KB of memory. Running at clock speeds of 2 MHz, the 8080 was notable for its instruction set, which included 78 instructions and 246 opcodes. It supported a range of addressing modes including direct, indirect, and register addressing. The 8080 was compatible with a variety of peripherals and played a crucial role in the development of many early computers.

The microprocessor's architecture was based on a simple and efficient design, making it accessible for hobbyists and engineers alike. It included an 8-bit accumulator, which allowed for data manipulation and storage during processing. Additionally, the 8080 featured registers like the program counter and stack pointer, which facilitated program flow control and data management. Its ability to handle interrupts also made it suitable for multitasking applications.

The Intel 8085, introduced in 1976, was an enhancement of the 8080 microprocessor. It maintained a similar architecture but included several key improvements. Notably, the 8085 had a built-in clock oscillator, simplifying system design by eliminating the need for external clock circuitry. It also featured a 5-bit control signal for status line management, which allowed for more flexible interfacing with peripheral devices. The 8085 was capable of running at speeds of up to 3 MHz and had an extended instruction set with 74 instructions.

One of the standout features of the 8085 was its support for 5 extra instructions for stack manipulation and I/O operations, which optimized the programming process. Additionally, it supported serial communication, making it suitable for interfacing with external devices. Its 16-bit address bus retained the 64 KB memory addressing capability of its predecessor.

Both the 8080 and 8085 microprocessors laid the groundwork for more advanced microprocessors in the years that followed. They demonstrated the potential of integrated circuits in computing and influenced the design and architecture of subsequent Intel microprocessors. Their legacy endures in the way they revolutionized computing, making technology accessible to a broader audience, and their influence is still felt in the design and architecture of modern microprocessors today.