Novatel OM-20000141 user manual Primary and Secondary Lightning Protection Ref # Description, Usa

Page 10

Notices

6.The primary and secondary lightning protections should be as close to the building's entrance as possible. Where feasible they should be mounted onto the grounding plate itself. See Figure 1, Primary and Secondary Lightning Protection on page 10.

Figure 1: Primary and Secondary Lightning Protection

Ref # Description

1Primary lightning protection device

2Secondary lightning protection device

3External antenna

4GNSS Receiver

5To ground

6Grounding plate or grounding point at the building’s entrance

Acceptable choices for Earth Grounds, for central buildings, are:

Grounded interior metal cold water pipe within five feet (1.5 m) of the point where it enters the building

Grounded metallic service raceway

Grounded electrical service equipment enclosure

Eight-foot grounding rod driven into the ground (only if bonded to the central building ground by #6, or heavier, bonding wire)

These installation instructions are the minimum requirements for receiver and antenna installations. Where applicable, follow the electrical codes for the country of installation. Examples of country codes include:

• USA

National Electrical Code (NFPA 70)

Canada Canadian Electrical Code (CSA C22)

• UK

British Standards Institute (BSI 7671)

10

SPAN-IGM User Manual Rev 2

Image 10
Contents SPAN-IGM OM-20000141 Rev SeptemberWarranty Return Instructions Proprietary NoticeTable of Contents Frequently Asked Questions Replacement Parts Figures Tables NovAtel Knowledge Base Before Contacting Customer Support Contact InformationCE Notice FCC NoticesIndustry Canada Weee NoticeHazard Impact Lightning Protection Installation and Grounding ProcedureWhat is the hazard? Actions to Mitigate Lightning HazardsPrimary and Secondary Lightning Protection Ref # Description USAIntroduction Fundamentals of Gnss + INSSPAN-IGM Integrated Gnss + INS unit System ComponentsScope Gnss antenna PC softwareConventions Required Equipment Span InstallationConnector Type Connections SPAN-IGM HardwareSPAN-IGM Cables SPAN-IGM Cables Use a USB cable to log raw data NovAtel Port PurposeHardware Set Up Typical SPAN-IGM Set Up Serial Port RadioTypical SPAN-IGM Set Up USB Port Radio Mount the Antenna Mount the SPAN-IGMConnect Power Connect the Antenna to the SPAN-IGMConnect a Computer Using a Serial Connection Connect a Computer to the SPAN-IGMO Strobe Signals Connect I/O Strobe SignalsConnect a Computer Using a USB Connection Signal Description aDisable the COM3 Serial Port Enable RS-422 serial connectionsEnable the COM3 Serial Port 8 COM3 Serial PortOdometer connection Odometer RequirementsSpan IMU Configuration Software ConfigurationGnss Configuration Pin M12 Connector Function J2 Wire Bundle On Cwpt SensorConfigure Span with Connect SPAN-IGM LEDs SPAN-IGM LEDsOff Flashing Slow 1Hz Flashing Fast 1Hz Span Operation Communicating with the Span SystemINS Window in NovAtel Connect Chapter Span OperationReal-Time Operation Span Operation ChapterSystem Start-Up and Alignment Techniques AsciiManual Alignment Kinematic AlignmentDual Antenna Alignment Solution Parameters Navigation ModeInssolutiongood Data Collection Logging Restriction Important Notice Vehicle to Span Frame Angular Offsets Calibration RoutineSpan Wheel Sensor Messages Wheel Sensor Update LogicMeasurement Timing and Frequency Course Over Ground Set up a Wheel SensorAzimuth Sources on a Span System Inertial AzimuthData Collection for Post-Processing Log Azimuth Source FormatVariable Lever Arm Installation SPAN-IGM Dual AntennaConfiguring Align with SPAN-IGM Alignment on a Moving Vessel Aided Transfer Alignment Alignment on a Stationary Vehicle Aided Static AlignmentAutomatic Alignment Mode Automatic Alignment default Span Align Attitude UpdatesUnaided Alignment Local-Level Frame ENU Reference Frames Within SpanSpan Body Frame Span Enclosure Frame Vehicle FrameFirmware Updates Firmware Updates and Model UpgradesNovAtel Firmware and Software Authorization Code Model UpgradesTransferring Firmware Files Updating or Upgrading Using the WinLoad UtilityTypes of Firmware Files Using the WinLoad Utility Open a File to DownloadUpdating using SoftLoad Commands Searching for CardWorking with S-Records Softloadsrec S-RECORDUpgrade Procedure Upgrading Using the Auth CommandXXXXXX,XXXXXX,XXXXXX,XXXXXX,XXXXXX,MODEL,EXPDATE Technical Specifications SPAN-IGM-A1 Technical SpecificationsSPAN-IGM-A1 Environmental Specifications SPAN-IGM-A1 Mechanical DrawingsSPAN-IGM-S1 Gnss Performance SPAN-IGM-S1 Technical SpecificationsSPAN-IGM-S1 Physical Specifications SPAN-IGM-S1 Data RatesSPAN-IGM-S1 Environmental Specifications SPAN-IGM-S1 Mechanical DrawingsPin # Label Description SPAN-IGM PortsMain Port Pinout AUX Port PinoutMIC Port SPAN-IGM Interface CableSPAN-IGM Interface Cable Pin-Out Descriptions User PortSPAN-IGM Align Interface Cable SPAN-IGM Align Interface Cable Pin-Out DescriptionsPin # Labels SPAN-IGM Auxiliary Port Interface CableCOM3 Port Varf DgndFrequently Asked Questions Appendix BSpan System Replacement PartsAccessories and Options Part Description NovAtel PartIndex Index OM-20000141 Rev September

OM-20000141 specifications

The Novatel OM-20000141 is a high-performance multi-GNSS (Global Navigation Satellite System) receiver designed for various applications including precision agriculture, autonomous vehicles, and surveying. This state-of-the-art device combines cutting-edge technologies to provide accurate and reliable positioning data, making it an indispensable tool for professionals in fields that rely on geolocation.

One of the standout features of the Novatel OM-20000141 is its multi-frequency support, allowing it to receive signals from GPS, GLONASS, Galileo, and BeiDou systems. This capability significantly enhances the accuracy and reliability of positioning information, particularly in challenging environments where signal interference can occur. By utilizing multiple frequencies, the OM-20000141 can mitigate errors caused by atmospheric disturbances and multi-path signals, resulting in improved precision.

In addition to its multi-GNSS capabilities, the receiver incorporates advanced RTK (Real-Time Kinematic) technology, enabling centimeter-level accuracy. This is particularly beneficial for applications that require pinpoint geolocation, such as precision agriculture, where farmers need to optimize crop yields and resource usage. The RTK technology allows users to achieve real-time positioning corrections, making it a vital tool for surveying and construction projects that demand high precision.

The Novatel OM-20000141 also features built-in connectivity options, including Bluetooth and USB interfaces, facilitating seamless integration with other devices and systems. This connectivity is crucial for enabling real-time data sharing and remote monitoring, enhancing the usability of the device in various operational environments.

Robustness is another significant characteristic of the OM-20000141. Designed to withstand harsh conditions, the receiver features a durable housing that protects it from dust, moisture, and extreme temperatures. This resilience ensures that the device operates effectively in all weather conditions, making it suitable for outdoor applications.

Furthermore, the receiver is equipped with intelligent positioning algorithms that optimize performance in urban canyons and dense foliage areas, where traditional GNSS receivers may struggle. By leveraging these algorithms, the OM-20000141 can maintain reliable positioning even in challenging environments.

Overall, the Novatel OM-20000141 stands out as a versatile and reliable GNSS receiver, merging advanced technologies to deliver high accuracy and reliability. Its exceptional features make it an invaluable asset for professionals in various industries, enhancing their ability to achieve precise geolocation and optimize their operations.