Novatel OM-20000141 user manual Span Operation, Communicating with the Span System

Page 27

Chapter 3

SPAN Operation

Before operating your SPAN system, ensure that you have followed the installation and setup instructions in Chapter 2, SPAN Installation on page 14.

You can use the NovAtel Connect software to configure receiver settings and to monitor data in real-time, between a rover SPAN system and base station.

SPAN system output is compatible with post-processing software from the NovAtel Waypoint Products Group. Visit our Web site at www.novatel.com for details.

Ensure the Control Panel Power Settings on your computer are not set to go into Hibernate or Standby modes. Data will be lost if one of these modes occurs during a logging session.

3.1Communicating with the SPAN System

Install the NovAtel Connect Utilities (Connect and Convert4) on the computer you intend to use to configure and monitor the SPAN system. To access and download the most current version of the NovAtel Connect Utilities, go to the Support page of the NovAtel web site at www.novatel.com/support/ firmware-software-and-manuals/. (Alternatively, you can use a terminal emulator program such as HyperTerminal to communicate with the receiver.) Refer to the NovAtel Connect Help file for more details on NovAtel Connect. The Help file is accessed by choosing Help from the main menu in

NovAtel Connect.

To enable communication from your computer to the SPAN system using NovAtel Connect:

1.Launch NovAtel Connect from the Start menu folder specified during the installation process. The default location is Start All Programs NovAtel Connect NovAtel Connect.

2.To define a new connection, select New Connection from the Device menu. The New Connection window appears.

If a connection is already defined for the SPAN system, choose Open Connection and skip to step 9.

3.Enter a name for the connection in Name box.

4.Select Serial or USB from the Type drop down list.

5.Select the computer port that the SPAN system is connected to from the Port drop down list.

6.If you selected Serial, select 115200 from the Baud Rate drop down list.

SPAN-IGM User Manual Rev 2

27

Image 27
Contents OM-20000141 Rev September SPAN-IGMReturn Instructions Proprietary Notice WarrantyTable of Contents Frequently Asked Questions Replacement Parts Figures Tables Contact Information NovAtel Knowledge Base Before Contacting Customer SupportWeee Notice FCC NoticesIndustry Canada CE NoticeActions to Mitigate Lightning Hazards Lightning Protection Installation and Grounding ProcedureWhat is the hazard? Hazard ImpactUSA Primary and Secondary Lightning Protection Ref # DescriptionFundamentals of Gnss + INS IntroductionGnss antenna PC software System ComponentsScope SPAN-IGM Integrated Gnss + INS unitConventions SPAN-IGM Hardware Span InstallationConnector Type Connections Required EquipmentNovAtel Port Purpose SPAN-IGM Cables Use a USB cable to log raw data SPAN-IGM CablesTypical SPAN-IGM Set Up Serial Port Radio Hardware Set UpTypical SPAN-IGM Set Up USB Port Radio Mount the SPAN-IGM Mount the AntennaConnect the Antenna to the SPAN-IGM Connect PowerConnect a Computer to the SPAN-IGM Connect a Computer Using a Serial ConnectionSignal Description a Connect I/O Strobe SignalsConnect a Computer Using a USB Connection O Strobe Signals8 COM3 Serial Port Enable RS-422 serial connectionsEnable the COM3 Serial Port Disable the COM3 Serial PortOdometer Requirements Odometer connectionPin M12 Connector Function J2 Wire Bundle On Cwpt Sensor Software ConfigurationGnss Configuration Span IMU ConfigurationConfigure Span with Connect SPAN-IGM LEDs SPAN-IGM LEDsOff Flashing Slow 1Hz Flashing Fast 1Hz Communicating with the Span System Span OperationChapter Span Operation INS Window in NovAtel ConnectSpan Operation Chapter Real-Time OperationAscii System Start-Up and Alignment TechniquesKinematic Alignment Manual AlignmentDual Antenna Alignment Data Collection Navigation ModeInssolutiongood Solution ParametersVehicle to Span Frame Angular Offsets Calibration Routine  Logging Restriction Important NoticeWheel Sensor Update Logic Span Wheel Sensor MessagesMeasurement Timing and Frequency Inertial Azimuth Set up a Wheel SensorAzimuth Sources on a Span System Course Over GroundLog Azimuth Source Format Data Collection for Post-ProcessingVariable Lever Arm SPAN-IGM Dual Antenna InstallationConfiguring Align with SPAN-IGM Alignment on a Stationary Vehicle Aided Static Alignment Alignment on a Moving Vessel Aided Transfer AlignmentSpan Align Attitude Updates Automatic Alignment Mode Automatic Alignment defaultUnaided Alignment Reference Frames Within Span Local-Level Frame ENUSpan Body Frame Span Vehicle Frame Enclosure FrameFirmware Updates and Model Upgrades Firmware UpdatesNovAtel Firmware and Software Model Upgrades Authorization CodeUpdating or Upgrading Using the WinLoad Utility Transferring Firmware FilesTypes of Firmware Files Open a File to Download Using the WinLoad UtilitySearching for Card Updating using SoftLoad CommandsSoftloadsrec S-RECORD Working with S-RecordsUpgrading Using the Auth Command Upgrade ProcedureXXXXXX,XXXXXX,XXXXXX,XXXXXX,XXXXXX,MODEL,EXPDATE SPAN-IGM-A1 Technical Specifications Technical SpecificationsSPAN-IGM-A1 Mechanical Drawings SPAN-IGM-A1 Environmental SpecificationsSPAN-IGM-S1 Data Rates SPAN-IGM-S1 Technical SpecificationsSPAN-IGM-S1 Physical Specifications SPAN-IGM-S1 Gnss PerformanceSPAN-IGM-S1 Mechanical Drawings SPAN-IGM-S1 Environmental SpecificationsAUX Port Pinout SPAN-IGM PortsMain Port Pinout Pin # Label DescriptionUser Port SPAN-IGM Interface CableSPAN-IGM Interface Cable Pin-Out Descriptions MIC PortSPAN-IGM Align Interface Cable Pin-Out Descriptions SPAN-IGM Align Interface CableVarf Dgnd SPAN-IGM Auxiliary Port Interface CableCOM3 Port Pin # LabelsAppendix B Frequently Asked QuestionsPart Description NovAtel Part Replacement PartsAccessories and Options Span SystemIndex Index OM-20000141 Rev September

OM-20000141 specifications

The Novatel OM-20000141 is a high-performance multi-GNSS (Global Navigation Satellite System) receiver designed for various applications including precision agriculture, autonomous vehicles, and surveying. This state-of-the-art device combines cutting-edge technologies to provide accurate and reliable positioning data, making it an indispensable tool for professionals in fields that rely on geolocation.

One of the standout features of the Novatel OM-20000141 is its multi-frequency support, allowing it to receive signals from GPS, GLONASS, Galileo, and BeiDou systems. This capability significantly enhances the accuracy and reliability of positioning information, particularly in challenging environments where signal interference can occur. By utilizing multiple frequencies, the OM-20000141 can mitigate errors caused by atmospheric disturbances and multi-path signals, resulting in improved precision.

In addition to its multi-GNSS capabilities, the receiver incorporates advanced RTK (Real-Time Kinematic) technology, enabling centimeter-level accuracy. This is particularly beneficial for applications that require pinpoint geolocation, such as precision agriculture, where farmers need to optimize crop yields and resource usage. The RTK technology allows users to achieve real-time positioning corrections, making it a vital tool for surveying and construction projects that demand high precision.

The Novatel OM-20000141 also features built-in connectivity options, including Bluetooth and USB interfaces, facilitating seamless integration with other devices and systems. This connectivity is crucial for enabling real-time data sharing and remote monitoring, enhancing the usability of the device in various operational environments.

Robustness is another significant characteristic of the OM-20000141. Designed to withstand harsh conditions, the receiver features a durable housing that protects it from dust, moisture, and extreme temperatures. This resilience ensures that the device operates effectively in all weather conditions, making it suitable for outdoor applications.

Furthermore, the receiver is equipped with intelligent positioning algorithms that optimize performance in urban canyons and dense foliage areas, where traditional GNSS receivers may struggle. By leveraging these algorithms, the OM-20000141 can maintain reliable positioning even in challenging environments.

Overall, the Novatel OM-20000141 stands out as a versatile and reliable GNSS receiver, merging advanced technologies to deliver high accuracy and reliability. Its exceptional features make it an invaluable asset for professionals in various industries, enhancing their ability to achieve precise geolocation and optimize their operations.