Friedrich XQ10M10, EQ08M11, XQ06M10, XQ05M10, XQ08M10 Refrigeration Sequence of Operation

Page 18

REFRIGERATION SEQUENCE OF OPERATION

A good understanding of the basic operation of the refrigeration system is essential for the service technician. Without this understanding, accurate troubleshooting of refrigeration system problems will be more diffi cult and time consuming, if not (in some cases) entirely impossible. The refrigeration system uses four basic principles (laws) in its operation they are as follows:

1.“Heat always fl ows from a warmer body to a cooler body.”

2.“Heat must be added to or removed from a substance before a change in state can occur”

3.“Flow is always from a higher pressure area to a lower pressure area.”

4.“The temperature at which a liquid or gas changes state is dependent upon the pressure.”

The refrigeration cycle begins at the compressor. Starting the compressor creates a low pressure in the suction line which draws refrigerant gas (vapor) into the compressor. The compressor then “compresses” this refrigerant, raising its pressure and its (heat intensity) temperature.

The refrigerant leaves the compressor through the discharge Line as a hot High pressure gas (vapor). The refrigerant enters the condenser coil where it gives up some of its heat. The condenser fan moving air across the coil’s fi nned surface facilitates the transfer of heat from the refrigerant to the relatively cooler outdoor air.

When a suffi cient quantity of heat has been removed from the refrigerant gas (vapor), the refrigerant will “condense” (i.e. change to a liquid). Once the refrigerant has been condensed (changed) to a liquid it is cooled even further by the air that continues to fl ow across the condenser coil.

The RAC design determines at exactly what point (in the condenser) the change of state (i.e. gas to a liquid) takes place. In all cases, however, the refrigerant must be totally condensed (changed) to a Liquid before leaving the condenser coil.

The refrigerant leaves the condenser Coil through the liquid line as a warm high pressure liquid. It next will pass through the refrigerant drier (if so equipped). It is the function of the drier to trap any moisture present in the system, contaminants, and large particulate matter.

The liquid refrigerant next enters the metering device. The metering device is a capillary tube. The purpose of the metering device is to “meter” (i.e. control or measure) the quantity of refrigerant entering the evaporator coil.

In the case of the capillary tube this is accomplished (by design) through size (and length) of device, and the pressure difference present across the device.

Since the evaporator coil is under a lower pressure (due to the suction created by the compressor) than the liquid line, the liquid refrigerant leaves the metering device entering the evaporator coil. As it enters the evaporator coil, the larger area and lower pressure allows the refrigerant to expand and lower its temperature (heat intensity). This expansion is often referred to as “boiling”. Since the unit’s blower is moving indoor air across the fi nned surface of the evaporator coil, the expanding refrigerant absorbs some of that heat. This results in a lowering of the indoor air temperature, hence the “cooling” effect.

The expansion and absorbing of heat cause the liquid refrigerant to evaporate (i.e. change to a gas). Once the refrigerant has been evaporated (changed to a gas), it is heated even further by the air that continues to fl ow across the evaporator coil.

The particular system design determines at exactly what point (in the evaporator) the change of state (i.e. liquid to a gas) takes place. In all cases, however, the refrigerant must be totally evaporated (changed) to a gas before leaving the evaporator coil.

The low pressure (suction) created by the compressor causes the refrigerant to leave the evaporator through the suction line as a cool low pressure vapor. The refrigerant then returns to the compressor, where the cycle is repeated.

Suction

Discharge

Line

Line

Evaporator

Condenser

Coil

Coil

 

Metering

Compressor

 

Device

 

Refrigerant Drier Liquid

RefrigerantLine

Strainer

17

Image 18
Contents Volt XQ05M10*, XQ06M10*, XQ08M10*, XQ10M10 Volt EQ08M11Table Of Contents Important Safety Information Your safety and the safety of others are very importantRefrigeration System Hazards Introduction Property Damage Hazards5th Digit Model Series / Year Introduced Unit Identification6th Digit Voltage 00001Performance Data Electrical Data Electric Shock HazardFire Hazard Electrical Shock Hazard How to operate the Friedrich room air conditioner XQ models How to use the remote control XQ models Electronic Control Sequence of Operation Electrical Components Functional Component DefinitionsMechanical Components Hermetic ComponentsError Code Listings Components TestingTesting the Electronic Control Boards for XQ Models Activating Test ModeThermostat Adjustment EQ08 System Control Switch TestEQ08 System Control Switch Test TestCapacitor Connections CapacitorsCapacitor Check with Capacitor Analyzer FAN MotorTesting the Heating Element Electric Shock Hazard Heating ElementDrain PAN Valve Refrigeration Sequence of Operation 410A Sealed System Repair Considerations Refrigeration system under high pressureEquipment Must be Capable 410A Sealed Refrigeration System RepairsEquipment Required Risk of Electric ShockMethod Of Charging / Repairs Burn HazardFreeze Hazard Undercharged Refrigerant Systems Overcharged Refrigerant SystemsRestricted Refrigerant System Compressor Checks Single Phase Resistance Test Ground TestHigh Temperatures Compressor ReplacementRecommended procedure for compressor replacement Explosion HazardRotary Compressor Special Troubleshooting and Service Routine Maintenance Sleeve / Drain Front CoverClearances Room AIR Conditioner Unit Performance Test Data Sheet Date Model SerialGeneral Troubleshooting Tips Unit does not operateDo not try to operate your air conditioner Cooling only Room AIR Conditioners Troubleshooting Tips Replace fuse, reset breaker. If repeats, check Fused separately Allowing discharge air to short Heat / Cool only Room AIR Conditioners Troubleshooting Tips Electronic Control Cool only Models Last character may vary Aham PUB. NO. RAC-1 Cooling Load Estimate Form Heat Gain from Quantity FactorsDAY Following is an example using the heat load form Heat Load FormWindows & Doors Area, sq. ft Infiltration Windows & Doors AVGRoom AIR Conditioners Limited Warranty Technical Support Contact Information Page Friedrich AIR Conditioning CO

XQ08M10, XQ10M10, XQ05M10, XQ06M10, EQ08M11 specifications

Friedrich offers a range of innovative air conditioning units designed to provide superior comfort and energy efficiency. Among its lineup, the XQ06M10, EQ08M11, XQ05M10, XQ08M10, and XQ10M10 models stand out due to their advanced technologies and user-friendly features.

The XQ series, with models like XQ06M10 and XQ05M10, is renowned for its sleek design and exceptional performance in cooling and heating environments. These models utilize a highly efficient compressor system that reduces energy consumption while maintaining optimal temperature control. The XQ06M10, for example, is designed for medium-sized rooms, featuring a cooling capacity that caters well to residential and small office settings.

On the other hand, the EQ08M11 model is known for its enhanced energy efficiency compared to traditional units, thanks to its inverter technology. This feature allows the compressor to adjust its speed according to the cooling demand, resulting in lower energy costs and a quieter operation. The EQ08M11 is also equipped with a multi-stage filtration system, improving indoor air quality by capturing dust, allergens, and pollutants.

The XQ08M10 and XQ10M10 cater to larger spaces, with their respective higher cooling capacities making them suitable for bigger living areas or small commercial settings. Both models boast an easy-to-use digital control panel, which requires minimal effort to adjust settings. Additionally, they include a programmable timer feature, allowing users to automate operation according to their daily schedules, further enhancing energy savings.

All these models showcase Friedrich’s commitment to durability and reliability, built with high-grade materials designed to withstand varying temperatures and humidity levels. The XQ series is compact, facilitating easy installation without compromising performance.

In summary, the Friedrich XQ06M10, EQ08M11, XQ05M10, XQ08M10, and XQ10M10 models combine cutting-edge technology with practicality, ensuring an efficient and enjoyable indoor climate. With features aimed at energy efficiency, ease of use, and effective air filtration, these units represent a smart investment for anyone looking to enhance their living or working environment.