Cisco Systems VC-289 manual Technology Prefixes, VC-292

Page 4

Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Features

For example, the local gatekeeper can be configured with the knowledge that zone prefix “212......” (that

is, any address beginning “212” and followed by 7 arbitrary digits) is handled by the gatekeeper gatekeeper_2. Then, when the local gatekeeper is asked to admit a call to destination address 2125551111, it knows to send the LRQ to gatekeeper_2.

When gatekeeper_2 receives the request, the gatekeeper must resolve the address so that the call can be sent to its final destination. There may be an H.323 endpoint with that E.164 address that has registered with gatekeeper_2, in which case gatekeeper_2 returns the IP address for that endpoint. However, it is possible that the E.164 address belongs to a non-H.323 device (for example, a telephone or an H.320 terminal). Because non-H.323 devices do not register with gatekeepers, gatekeeper_2 cannot resolve the address. The gatekeeper must be able to select a gateway that can be used to reach the non-H.323 device. This is where the technology prefixes (or “gateway-type”) become useful.

Technology Prefixes

The network administrator selects technology prefixes (tech-prefixes) to denote different types or classes of gateways. The gateways are then configured to register with their gatekeepers with these prefixes. For example, voice gateways can register with tech-prefix 1#, H.320 gateways with tech-prefix 2#, and voicemail gateways with tech-prefix 3#. More than one gateway can register with the same type prefix. When this happens, the gatekeeper makes a random selection among gateways of the same type.

If the callers know the type of device that they are trying to reach, they can include the technology prefix in the destination address to indicate the type of gateway to use to get to the destination. For example, if a caller knows that address 2125551111 belongs to a regular telephone, the destination address of 1#2125551111 can be used, where 1# indicates that the address should be resolved by a voice gateway. When the voice gateway receives the call for 1#2125551111, it strips off the technology prefix and bridges the next leg of the call to the telephone at 2125551111.

Gatekeeper-to-Gatekeeper Redundancy and Load-Sharing Mechanism

The gatekeeper-to-gatekeeper redundancy and load-sharing mechanism expands the capability that is provided by the redundant H.323 zone support feature. Redundant H.323 zone support, which was introduced in Cisco IOS Release 12.1(1)T, allows you to configure multiple gatekeepers to service the same zone or technology prefix by sending LRQs to two or more gatekeepers.

With the redundant H.323 zone support feature, the LRQs are sent simultaneously (in a “blast” fashion) to all of the gatekeepers in the list. The gateway registers with the gatekeeper that responds first. Then, if that gatekeeper becomes unavailable, the gateway registers with another gatekeeper from the list.

The gatekeeper-to-gatekeeper redundancy and load-sharing mechanism allows you to configure gatekeeper support and to give preference to specific gatekeepers. You may choose whether the LRQs are sent simultaneously or sequentially (one at a time) to the remote gatekeepers in the list. If the LRQs are sent sequentially, a delay is inserted after the first LRQ and before the next LRQ is sent. This delay allows the first gatekeeper to respond before the LRQ is sent to the next gatekeeper. The order in which LRQs are sent to the gatekeepers is based on the order in which the gatekeepers are listed (using either the zone prefix command or the gw-type-prefixcommand).

Once the local gatekeeper has sent LRQs to all the remote gatekeepers in the list (either simultaneously or sequentially), if it has not yet received a location confirmation (LCF), it opens a “window.” During this window, the local gatekeeper waits to see whether a LCF is subsequently received from any of the remote gatekeepers. If no LCF is received from any of the remote gatekeepers while the window is open, the call is rejected.

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-292

Image 4
Contents Configuring H.323 Gatekeepers and Proxies VC-289Principal Multimedia Conference Manager Functions VC-290Zone and Subnet Configuration Redundant H.323 Zone SupportGatekeeper Multiple Zone Support Gateway Support for Alternate GatekeepersTechnology Prefixes VC-292Interzone Communication Radius and TACACS+Accounting via Radius and TACACS+ Terminal Name RegistrationInterzone Routing Using E.164 Addresses VC-294VC-295 Hsrp Support VC-296Security VC-297Proxy Inside the Firewall VC-298Proxy in Co-Edge Mode VC-299Proxies and NAT Proxy Outside the FirewallVC-300 Application-Specific Routing Quality of ServiceVC-301 Prerequisite Tasks and Restrictions VC-302Configuring the Gatekeeper VC-303Starting a Gatekeeper VC-304Gw-prioritypriority gw-alias-Optional Use H323-gateway voip h.323-id commandVC-305 Zone subnet command Mask-addressenableSubnet local-gatekeeper-name Subnet-address /bits-in-maskConfiguring Intergatekeeper Communication Server-address2...server-address6 -OptionalRas gk-id@host port priority VC-307Other-gatekeeper-ip-address-Specifies the IP Configuring Redundant H.323 Zone SupportVC-308 Configuring Local and Remote Gatekeepers VC-309Configuring Redundant Gatekeepers for a Zone Prefix Verifying Zone Prefix RedundancyOther-gatekeeper-name -Name of the remote Other-gatekeeper-ip-address -IP addressZone local or zone remote command. You can Configuring Redundant Gatekeepers for a Technology PrefixVC-311 Verifying Technology Prefix Redundancy VC-312Configuring Static Nodes VC-313Configuring H.323 Users via Radius VC-314Server radius or aaa group server tacacs+ VC-315VC-316 Password default password-Specifies VC-317Configuring a RADIUS/AAA Server VC-318Users via Radius section on VC-319Configuring User Accounting Activity for Radius VC-320Other-gatekeeper-ip-address -Specifies the IP Configuring E.164 Interzone RoutingVC-321 Configuring H.323 Version 2 Features VC-322Configuring a Dialing Prefix for Each Gateway VC-323Gateway with the h323-gateway voip h.323-id command VC-324Following is an example of a registration message VC-325Configuring a Prefix to a Gatekeeper Zone List VC-326Arq, lcf, lrj, lrq, rrq, urq -Specifies Registration VC-327VC-328 VC-329 Remote-zone remote-zone-name -Defines a Configuring Inbound or Outbound Gatekeeper Proxied AccessVC-330 Router# show gatekeeper zone status Verifying Gatekeeper Proxied Access ConfigurationVC-331 Configuring a Forced Disconnect on a Gatekeeper Configuring the ProxyVC-332 Show interfaces command Configuring a Proxy Without ASRVC-333 VC-334 VC-335 VC-336 Configuring a Proxy with ASR TunnelVg-anylan VC-337Without ASR section on VC-338VC-339 Cisco IOS Dial Technologies Command VC-340VC-341 VC-342 VC-343 VC-344 Configuring a Proxy with ASR section on VC-345Configuring a Gatekeeper Example VC-346Redundant Gatekeepers for a Zone Prefix Example Redundant Gatekeepers for a Technology Prefix ExampleInterzone Routing Example VC-347VC-348 Configuring Hsrp on the Gatekeeper Example VC-349Using ASR for a Separate Multimedia Backbone Example VC-350Isolating the Multimedia Network Enabling the Proxy to Forward H.323 PacketsVC-351 PX1 Configuration VC-352R1 Configuration VC-353Co-Edge Proxy with Subnetting Example VC-354VC-355 R2 Configuration PX2 ConfigurationVC-356 Configuring a QoS-Enforced Open Proxy Using Rsvp Example VC-357VC-358 Configuring a Closed Co-Edge Proxy with ASR VC-359Defining One Zone for Multiple Gateways Example Defining Multiple Zones ExampleVC-360 Configuring a Proxy for Outbound Calls Example Configuring a Proxy for Inbound Calls ExampleVC-361 Removing a Proxy Example Security Example VC-362Prohibiting Proxy Use for Inbound Calls Example Gktmp and RAS Messages ExampleVC-363 VC-364

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.