Cisco Systems VC-289 manual PX2 Configuration, R2 Configuration, VC-356

Page 68

Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Configuration Examples

Configuring an Inside-Edge Proxy with ASR Without Subnetting Example

The configuration of the co-edge proxy in Edge net 1 has already been presented above. Figure 65 illustrates the configuration of the inside-edge proxy PX2 and edge router R2 of Edge net 2. RIP is used on the edge networks. IGRP is used on the data backbone and the multimedia backbone.

Figure 65 Edge Net 2 with Inside-Edge Proxy and No Subnetting

 

 

E1: 172.22.0.1

 

 

L0: 10.0.0.0

 

 

 

 

PX1

Multimedia

 

E0: 172.20.0.1

backbone

 

 

 

 

 

EP1

Edge net 1

 

 

 

E0: 172.20.0.2

 

 

R1

Data backbone

 

E1: 172.21.0.1

E1: 172.22.0.2

S0: 10.0.0.1

S0: 10.0.0.2

E0: 172.23.0.2

PX2

Edge net 2

EP2

R2

E2: 172.21.0.2

 

 

 

E0: 172.23.0.1

 

 

 

11392

PX2 Configuration

The following output is for the PX2 configuration:

!

proxy h323

!

interface Ethernet0

ip address 172.23.0.2 255.255.0.0

!

interface Serial0

ip address 10.0.0.2 255.0.0.0 ip access-group 101 in

ip access-group 101 out h323 interface

h323 asr

h323 h323-id PX2@zone2.com

h323 gatekeeper ipaddr 10.0.0.2

!

router rip

redistribute connected metric 10000 10 255 255 65535 network 172.23.0.0

!

access-list 101 permit ip any host 10.0.0.2 access-list 101 permit ip host 10.0.0.2 any

R2 Configuration

The following output is for the R2 configuration:

!

interface Ethernet0

ip address 172.23.0.1 255.255.0.0

!

interface Ethernet1

ip address 172.22.0.1 255.255.0.0

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-356

Image 68
Contents Configuring H.323 Gatekeepers and Proxies VC-289Principal Multimedia Conference Manager Functions VC-290Zone and Subnet Configuration Redundant H.323 Zone SupportGatekeeper Multiple Zone Support Gateway Support for Alternate GatekeepersTechnology Prefixes VC-292Interzone Communication Radius and TACACS+Accounting via Radius and TACACS+ Terminal Name RegistrationInterzone Routing Using E.164 Addresses VC-294VC-295 Hsrp Support VC-296Security VC-297Proxy Inside the Firewall VC-298Proxy in Co-Edge Mode VC-299VC-300 Proxy Outside the FirewallProxies and NAT VC-301 Quality of ServiceApplication-Specific Routing Prerequisite Tasks and Restrictions VC-302Configuring the Gatekeeper VC-303Starting a Gatekeeper VC-304VC-305 H323-gateway voip h.323-id commandGw-prioritypriority gw-alias-Optional Use Zone subnet command Mask-addressenableSubnet local-gatekeeper-name Subnet-address /bits-in-maskConfiguring Intergatekeeper Communication Server-address2...server-address6 -OptionalRas gk-id@host port priority VC-307VC-308 Configuring Redundant H.323 Zone SupportOther-gatekeeper-ip-address-Specifies the IP Configuring Local and Remote Gatekeepers VC-309Configuring Redundant Gatekeepers for a Zone Prefix Verifying Zone Prefix RedundancyOther-gatekeeper-name -Name of the remote Other-gatekeeper-ip-address -IP addressVC-311 Configuring Redundant Gatekeepers for a Technology PrefixZone local or zone remote command. You can Verifying Technology Prefix Redundancy VC-312Configuring Static Nodes VC-313Configuring H.323 Users via Radius VC-314Server radius or aaa group server tacacs+ VC-315VC-316 Password default password-Specifies VC-317Configuring a RADIUS/AAA Server VC-318Users via Radius section on VC-319Configuring User Accounting Activity for Radius VC-320VC-321 Configuring E.164 Interzone RoutingOther-gatekeeper-ip-address -Specifies the IP Configuring H.323 Version 2 Features VC-322Configuring a Dialing Prefix for Each Gateway VC-323Gateway with the h323-gateway voip h.323-id command VC-324Following is an example of a registration message VC-325Configuring a Prefix to a Gatekeeper Zone List VC-326Arq, lcf, lrj, lrq, rrq, urq -Specifies Registration VC-327VC-328 VC-329 VC-330 Configuring Inbound or Outbound Gatekeeper Proxied AccessRemote-zone remote-zone-name -Defines a VC-331 Verifying Gatekeeper Proxied Access ConfigurationRouter# show gatekeeper zone status VC-332 Configuring the ProxyConfiguring a Forced Disconnect on a Gatekeeper VC-333 Configuring a Proxy Without ASRShow interfaces command VC-334 VC-335 VC-336 Configuring a Proxy with ASR TunnelVg-anylan VC-337Without ASR section on VC-338VC-339 Cisco IOS Dial Technologies Command VC-340VC-341 VC-342 VC-343 VC-344 Configuring a Proxy with ASR section on VC-345Configuring a Gatekeeper Example VC-346Redundant Gatekeepers for a Zone Prefix Example Redundant Gatekeepers for a Technology Prefix ExampleInterzone Routing Example VC-347VC-348 Configuring Hsrp on the Gatekeeper Example VC-349Using ASR for a Separate Multimedia Backbone Example VC-350VC-351 Enabling the Proxy to Forward H.323 PacketsIsolating the Multimedia Network PX1 Configuration VC-352R1 Configuration VC-353Co-Edge Proxy with Subnetting Example VC-354VC-355 VC-356 PX2 ConfigurationR2 Configuration Configuring a QoS-Enforced Open Proxy Using Rsvp Example VC-357VC-358 Configuring a Closed Co-Edge Proxy with ASR VC-359VC-360 Defining Multiple Zones ExampleDefining One Zone for Multiple Gateways Example VC-361 Configuring a Proxy for Inbound Calls ExampleConfiguring a Proxy for Outbound Calls Example Removing a Proxy Example Security Example VC-362VC-363 Gktmp and RAS Messages ExampleProhibiting Proxy Use for Inbound Calls Example VC-364

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.