Cisco Systems VC-289 Zone and Subnet Configuration, Redundant H.323 Zone Support, Zone Prefixes

Page 3

Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Features

Interzone Routing Using E.164 Addresses, page 294

HSRP Support, page 296

Zone and Subnet Configuration

A zone is defined as the set of H.323 nodes controlled by a single gatekeeper. Gatekeepers that coexist on a network may be configured so that they register endpoints from different subnets.

Endpoints attempt to discover a gatekeeper and consequently the zone of which they are members by using the Registration, Admission, and Status (RAS) message protocol. The protocol supports a discovery message that may be sent multicast or unicast.

If the message is sent multicast, the endpoint registers nondeterministically with the first gatekeeper that responds to the message. To enforce predictable behavior, where endpoints on certain subnets are assigned to specific gatekeepers, the zone subnet command can be used to define the subnets that constitute a given gatekeeper zone. Any endpoint on a subnet that is not enabled for the gatekeeper will not be accepted as a member of that gatekeeper zone. If the gatekeeper receives a discovery message from such an endpoint, it will send an explicit reject message.

Redundant H.323 Zone Support

Redundant H.323 zone support allows for the following:

Gatekeeper Multiple Zone Support, page 291

Gateway Support for Alternate Gatekeepers, page 291

Zone Prefixes, page 291

Technology Prefixes, page 292

Gatekeeper Multiple Zone Support

Redundant H.323 zone support allows users to configure multiple remote zones to service the same zone or technology prefix. A user is able to configure more than one remote gatekeeper to which the local gatekeeper can send location requests (LRQs). This allows for more reliable call completion.

Redundant H.323 zone support is supported on all gatekeeper-enabled IOS images.

Gateway Support for Alternate Gatekeepers

Redundant H.323 zone support in the gateway allows a user to configure two gatekeepers in the gateway (one as the primary and the other as the alternate). All gatekeepers are active. The gateway can choose to register with any one (but not both) at a given time. If that gatekeeper becomes unavailable, the gateway registers with the other.

Redundant H.323 zone support is supported on all gateway-enabled images.

Zone Prefixes

The zone prefixes (typically area codes) serve the same purpose as the domain names in the H.323-ID address space.

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-291

Image 3
Contents VC-289 Configuring H.323 Gatekeepers and ProxiesVC-290 Principal Multimedia Conference Manager FunctionsGateway Support for Alternate Gatekeepers Zone and Subnet ConfigurationRedundant H.323 Zone Support Gatekeeper Multiple Zone SupportVC-292 Technology PrefixesTerminal Name Registration Interzone CommunicationRadius and TACACS+ Accounting via Radius and TACACS+VC-294 Interzone Routing Using E.164 AddressesVC-295 VC-296 Hsrp SupportVC-297 SecurityVC-298 Proxy Inside the FirewallVC-299 Proxy in Co-Edge ModeProxy Outside the Firewall Proxies and NATVC-300 Quality of Service Application-Specific RoutingVC-301 VC-302 Prerequisite Tasks and RestrictionsVC-303 Configuring the GatekeeperVC-304 Starting a GatekeeperH323-gateway voip h.323-id command Gw-prioritypriority gw-alias-Optional UseVC-305 Subnet-address /bits-in-mask Zone subnet commandMask-addressenable Subnet local-gatekeeper-nameVC-307 Configuring Intergatekeeper CommunicationServer-address2...server-address6 -Optional Ras gk-id@host port priorityConfiguring Redundant H.323 Zone Support Other-gatekeeper-ip-address-Specifies the IPVC-308 VC-309 Configuring Local and Remote GatekeepersOther-gatekeeper-ip-address -IP address Configuring Redundant Gatekeepers for a Zone PrefixVerifying Zone Prefix Redundancy Other-gatekeeper-name -Name of the remoteConfiguring Redundant Gatekeepers for a Technology Prefix Zone local or zone remote command. You canVC-311 VC-312 Verifying Technology Prefix RedundancyVC-313 Configuring Static NodesVC-314 Configuring H.323 Users via RadiusVC-315 Server radius or aaa group server tacacs+VC-316 VC-317 Password default password-SpecifiesVC-318 Configuring a RADIUS/AAA ServerVC-319 Users via Radius section onVC-320 Configuring User Accounting Activity for RadiusConfiguring E.164 Interzone Routing Other-gatekeeper-ip-address -Specifies the IPVC-321 VC-322 Configuring H.323 Version 2 FeaturesVC-323 Configuring a Dialing Prefix for Each GatewayVC-324 Gateway with the h323-gateway voip h.323-id commandVC-325 Following is an example of a registration messageVC-326 Configuring a Prefix to a Gatekeeper Zone ListVC-327 Arq, lcf, lrj, lrq, rrq, urq -Specifies RegistrationVC-328 VC-329 Configuring Inbound or Outbound Gatekeeper Proxied Access Remote-zone remote-zone-name -Defines aVC-330 Verifying Gatekeeper Proxied Access Configuration Router# show gatekeeper zone statusVC-331 Configuring the Proxy Configuring a Forced Disconnect on a GatekeeperVC-332 Configuring a Proxy Without ASR Show interfaces commandVC-333 VC-334 VC-335 VC-336 VC-337 Configuring a Proxy with ASRTunnel Vg-anylanVC-338 Without ASR section onVC-339 VC-340 Cisco IOS Dial Technologies CommandVC-341 VC-342 VC-343 VC-344 VC-345 Configuring a Proxy with ASR section onVC-346 Configuring a Gatekeeper ExampleVC-347 Redundant Gatekeepers for a Zone Prefix ExampleRedundant Gatekeepers for a Technology Prefix Example Interzone Routing ExampleVC-348 VC-349 Configuring Hsrp on the Gatekeeper ExampleVC-350 Using ASR for a Separate Multimedia Backbone ExampleEnabling the Proxy to Forward H.323 Packets Isolating the Multimedia NetworkVC-351 VC-352 PX1 ConfigurationVC-353 R1 ConfigurationVC-354 Co-Edge Proxy with Subnetting ExampleVC-355 PX2 Configuration R2 ConfigurationVC-356 VC-357 Configuring a QoS-Enforced Open Proxy Using Rsvp ExampleVC-358 VC-359 Configuring a Closed Co-Edge Proxy with ASRDefining Multiple Zones Example Defining One Zone for Multiple Gateways ExampleVC-360 Configuring a Proxy for Inbound Calls Example Configuring a Proxy for Outbound Calls ExampleVC-361 VC-362 Removing a Proxy Example Security ExampleGktmp and RAS Messages Example Prohibiting Proxy Use for Inbound Calls ExampleVC-363 VC-364

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.