Cisco Systems VC-289 Interzone Communication, Radius and TACACS+, Terminal Name Registration

Page 5

Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Features

Terminal Name Registration

Gatekeepers recognize one of two types of terminal aliases, or terminal names:

H.323 IDs, which are arbitrary, case-sensitive text strings

E.164 addresses, which are telephone numbers

If an H.323 network deploys interzone communication, each terminal should at least have a fully qualified e-mail name as its H.323 identification (ID), for example, bob@cisco.com. The domain name of the e-mail ID should be the same as the configured domain name for the gatekeeper of which it is to be a member. As in the previous example, the domain name would be cisco.com.

Interzone Communication

To allow endpoints to communicate between zones, gatekeepers must be able to determine which zone an endpoint is in and be able to locate the gatekeeper responsible for that zone. If the Domain Name System (DNS) mechanism is available, a DNS domain name can be associated with each gatekeeper. See the DNS configuration task in the “Configuring Intergatekeeper Communication” section to understand how to configure DNS.

RADIUS and TACACS+

Version 1 of the H.323 specification does not provide a mechanism for authenticating registered endpoints. Credential information is not passed between gateways and gatekeepers. However, by enabling AAA on the gatekeeper and configuring for RADIUS and TACACS+, a rudimentary form of identification can be achieved.

If the AAA feature is enabled, the gatekeeper attempts to use the registered aliases along with a password and completes an authentication transaction to a RADIUS and TACACS+ server. The registration will be accepted only if RADIUS and TACACS+ successfully authenticates the name.

The gatekeeper can be configured so that a default password can be used for all users. The gatekeeper can also be configured so that it recognizes a password separator character that allows users to piggyback their passwords onto H.323-ID registrations. In this case, the separator character separates the ID and password fields.

Note The names loaded into RADIUS and TACACS+ are probably not the same names provided for dial access because they may all have the same password.

Accounting via RADIUS and TACACS+

If AAA is enabled on the gatekeeper, the gatekeeper will emit an accounting record each time a call is admitted or disconnected.

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-293

Image 5
Contents VC-289 Configuring H.323 Gatekeepers and ProxiesVC-290 Principal Multimedia Conference Manager FunctionsRedundant H.323 Zone Support Zone and Subnet ConfigurationGatekeeper Multiple Zone Support Gateway Support for Alternate GatekeepersVC-292 Technology PrefixesRadius and TACACS+ Interzone CommunicationAccounting via Radius and TACACS+ Terminal Name RegistrationVC-294 Interzone Routing Using E.164 AddressesVC-295 VC-296 Hsrp SupportVC-297 SecurityVC-298 Proxy Inside the FirewallVC-299 Proxy in Co-Edge ModeVC-300 Proxy Outside the FirewallProxies and NAT VC-301 Quality of ServiceApplication-Specific Routing VC-302 Prerequisite Tasks and RestrictionsVC-303 Configuring the GatekeeperVC-304 Starting a GatekeeperVC-305 H323-gateway voip h.323-id commandGw-prioritypriority gw-alias-Optional Use Mask-addressenable Zone subnet commandSubnet local-gatekeeper-name Subnet-address /bits-in-maskServer-address2...server-address6 -Optional Configuring Intergatekeeper CommunicationRas gk-id@host port priority VC-307VC-308 Configuring Redundant H.323 Zone SupportOther-gatekeeper-ip-address-Specifies the IP VC-309 Configuring Local and Remote GatekeepersVerifying Zone Prefix Redundancy Configuring Redundant Gatekeepers for a Zone PrefixOther-gatekeeper-name -Name of the remote Other-gatekeeper-ip-address -IP addressVC-311 Configuring Redundant Gatekeepers for a Technology PrefixZone local or zone remote command. You can VC-312 Verifying Technology Prefix RedundancyVC-313 Configuring Static NodesVC-314 Configuring H.323 Users via RadiusVC-315 Server radius or aaa group server tacacs+VC-316 VC-317 Password default password-SpecifiesVC-318 Configuring a RADIUS/AAA ServerVC-319 Users via Radius section onVC-320 Configuring User Accounting Activity for RadiusVC-321 Configuring E.164 Interzone RoutingOther-gatekeeper-ip-address -Specifies the IP VC-322 Configuring H.323 Version 2 FeaturesVC-323 Configuring a Dialing Prefix for Each GatewayVC-324 Gateway with the h323-gateway voip h.323-id commandVC-325 Following is an example of a registration messageVC-326 Configuring a Prefix to a Gatekeeper Zone ListVC-327 Arq, lcf, lrj, lrq, rrq, urq -Specifies RegistrationVC-328 VC-329 VC-330 Configuring Inbound or Outbound Gatekeeper Proxied AccessRemote-zone remote-zone-name -Defines a VC-331 Verifying Gatekeeper Proxied Access ConfigurationRouter# show gatekeeper zone status VC-332 Configuring the ProxyConfiguring a Forced Disconnect on a Gatekeeper VC-333 Configuring a Proxy Without ASRShow interfaces command VC-334 VC-335 VC-336 Tunnel Configuring a Proxy with ASRVg-anylan VC-337VC-338 Without ASR section onVC-339 VC-340 Cisco IOS Dial Technologies CommandVC-341 VC-342 VC-343 VC-344 VC-345 Configuring a Proxy with ASR section onVC-346 Configuring a Gatekeeper ExampleRedundant Gatekeepers for a Technology Prefix Example Redundant Gatekeepers for a Zone Prefix ExampleInterzone Routing Example VC-347VC-348 VC-349 Configuring Hsrp on the Gatekeeper ExampleVC-350 Using ASR for a Separate Multimedia Backbone ExampleVC-351 Enabling the Proxy to Forward H.323 PacketsIsolating the Multimedia Network VC-352 PX1 ConfigurationVC-353 R1 ConfigurationVC-354 Co-Edge Proxy with Subnetting ExampleVC-355 VC-356 PX2 ConfigurationR2 Configuration VC-357 Configuring a QoS-Enforced Open Proxy Using Rsvp ExampleVC-358 VC-359 Configuring a Closed Co-Edge Proxy with ASRVC-360 Defining Multiple Zones ExampleDefining One Zone for Multiple Gateways Example VC-361 Configuring a Proxy for Inbound Calls ExampleConfiguring a Proxy for Outbound Calls Example VC-362 Removing a Proxy Example Security ExampleVC-363 Gktmp and RAS Messages ExampleProhibiting Proxy Use for Inbound Calls Example VC-364

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.