Agilent Technologies 89441A manual Gpib

Page 77

ch1 + j*ch2 receiver

HT

 

 

changing numeric parameters HT

 

channel 1

 

 

 

 

See input channels

 

 

 

channel 1 and 2 connectors

HT

 

channel 2

 

 

 

 

See input channels

 

 

 

circulation, air GS 7-9

 

 

 

cleaning the screen

GS 7-19

 

clear source trip softkey

HT

 

coherence GS 5-8, HT

 

 

 

color index softkey

HT

 

 

 

color, adjusting HT

 

 

 

 

connecting

 

 

 

 

frequency reference

GS 7-7

 

IF section to RF section GS 7-7

 

minimum loss pad

GS 7-18

 

connector

 

 

 

 

AUI GS 7-14

 

 

 

 

external monitor

GS 7-16

 

external reference

GS 7-7

 

grounding requirements

GS 7-3

 

GPIB

GS 7-16

 

 

 

 

input

GS 7-8

 

 

 

 

keyboard GS 7-17

 

 

 

oven reference GS 7-7

 

 

parallel GS 7-15

 

 

 

 

serial

GS 7-15

 

 

 

 

source

GS 7-8

 

 

 

 

system interconnect

GS 7-16

 

ThinLAN GS 7-14

 

 

 

connectors, front panel connectors

HT

connectors, rear panel connectors

HT

constellation diagram

 

 

 

example OP 6-5, OP 7-12

 

using

HT

 

 

 

 

continuing a measurement

HT

 

continuous sweep, selecting

HT

 

cooling

GS 7-9

 

 

 

 

coordinates, trace

 

 

 

 

See traces

 

 

 

 

copying files between 3.5 inch

 

diskettes

HT

 

 

 

 

cords, power GS 7-3

 

 

 

correlation HT

 

 

 

 

auto correlation HT

 

 

 

cross correlation softkey

HT

 

cross-correlation, math function

HT

coupling

 

 

 

 

 

bandwidth OP 14-4

 

 

 

Index

cross spectrum measurements HT CW (fixed sine) softkey HT

D

data comment header HT data format hardkey HT data registers HT

about data registers HT

displaying data-register contents HT removing HT

DATA?, definition of HT date, changing HT

dc measurements OP 14-9 dc offset softkey HT

dc response OP 14-9 decibels HT

DECT (digital european cellular telephone) HT

demodulation, analog HT about analog demodulation HT affects on bandwidth HT

AM demodulation HT auto carrier HT averaging OP 15-13 block diagram OP 15-3, HT carrier frequency, displaying HT carrier locking OP 15-8 examples OP 1-1

FM demodulation HT gating OP 15-13, OP 16-5

making zero span measurements HT overview OP 12-6

PM demodulation HT triggering OP 15-13, HT

two channel measurements HT See also AM, FM, PM demodulation

demodulation, digital HT about digital demodulation HT aliasing, IQ measured spectrum HT amplitude droop (in symbol table) HT averaging HT

block diagrams OP 17-3, HT BPSK/8PSK HT

carrier frequency error (in symbol table) HT carrier locking HT connections HT constellation diagram HT

GS = Getting Started Guide

HT = Online Help

OP = Operator's Guide

(press (Help) key)

Image 77
Contents Agilent Technologies 89441A Getting Started Guide Analyzer at a Glance Front Panel IiiThis page left intentionally blank Saftey Summary Fuses Safety Symbols Notation Conventions This Book This page left intentionally blank Table of Contents Xii General TasksUsing Online Help Enter the online help system Press Help To learn about online helpTo display help for hardkeys and softkeys To display a related help topic To select a topic from the help index Page Making Simple Noise Measurements Start an averaged measurement To measure random noiseTurn on the band power markers To measure band powerTurn on the carrier-to-noise marker To measure signal to noise ratiosCarrier-to-noise ratio normalized to one Hertz Page Using Gating to Characterize a Burst Signal Display should now appear as shown below To Use Time GatingExamine the second burst Configure the display and the measurementSet up the time gating and examine the first burst Page Measuring Relative Phase To measure the relative phase of an AM signal Measuring Relative Phase Zero the offset marker on the carrier To measure the relative phase of an PM signalCharacterizing a Filter If section for network measurements To set up a frequency response measurementHave option AY7 Press Auto Scale To use the absolute marker To use the relative marker To use the search marker Specify phase data for the second trace To display phaseActivate the second trace and select a coherence measurement To display coherenceGeneral Tasks To set up peripherals General Tasks To save data with an internal or RAM disk Press Return To recall data with an internal or RAM diskTo format a disk Define a math function Press Math, define F1 To create a math functionDefine a constant To use a math function Press measurement state or input/source state To display a summary of instrument parametersPage Preparing the Analyzer for Use Preparing the Analyzer for Use To chassis ground Analyzer cabinet can subject the operator to lethal voltages To do the incoming inspection Power if it is damagedPreparing the Analyzer for Use To connect the sections Preparing the Analyzer for Use To install the analyzer Select To change the if section’s line-voltage switchTo change the RF section’s line-voltage switch To change the if section’s fuse RF Section To change the RF section’s fuseInternet protocol address Return To connect the analyzer to a LANTo connect the analyzer to a parallel device To connect the analyzer to a serial deviceTo connect the analyzer to an external monitor To connect the analyzer to an Gpib deviceConnect the other end of the keyboard cable to the keyboard Set the if section’s power switch to on lTo connect the optional keyboard To connect the optional minimum loss pad To store the analyzer To clean the screenElectricity which can damage electronic components To transport the analyzerIf the if section will not power up If the RF section will not power up If the analyzer’s stop frequency is 10 MHz Page Index Basic HT Gpib QAM Dqpsk HTSNR SNR HTSee also traces Gpib HT FSKGpib LAN Manuals, for this product HT See LAN RAM QAM HTSee knob RPGSource LED Tdma Sync not Found HTEXT Trigger LED HT PSD HTVSB Page Agilent 89400-Series Documentation Roadmap Need Assistance?

89441A specifications

The Agilent Technologies 89441A is a high-performance signal analyzer renowned for its versatility in both research and industrial applications. Designed primarily for the testing and analysis of RF signals, this instrument serves as an indispensable tool for engineers and technicians in the telecommunications and electronic testing fields.

One of the key features of the 89441A is its wide frequency range. It operates from 100 kHz up to 1.5 GHz, making it suitable for a vast array of applications, including wireless communications, spectrum monitoring, and signal integrity testing. The 89441A incorporates advanced digital signal processing technologies that ensure accurate and efficient signal analysis, providing users with a high level of precision and reliability in their measurements.

Another significant aspect of the 89441A is its ability to perform real-time analysis. This feature allows users to capture and display transient events with high fidelity, making it easier to analyze complex signals. Coupled with a comprehensive measurement suite, the device is capable of conducting various measurements such as modulation analysis, vector signal analysis, and spectral measurements, making it highly suitable for modern communication systems.

The 89441A also boasts a user-friendly interface that enhances operational efficiency. Its intuitive graphical user interface provides users with easy access to various functions, minimizing the learning curve for new users. Additionally, it supports multiple languages, further broadening its accessibility for global users.

One of the standout characteristics of the 89441A is its high dynamic range, which enables reliable measurements even in the presence of noise. This is critical for applications where signal purity is paramount. Furthermore, its capability to demodulate multiple standards allows it to adapt to evolving technological requirements in various industries.

The flexibility of the 89441A is complemented by its modular design, allowing users to expand its capabilities as their testing needs grow. It supports various plug-in modules and accessories, enabling customization for specific measurement tasks.

In summary, the Agilent Technologies 89441A is an advanced signal analyzer characterized by its wide frequency range, real-time analysis capabilities, user-friendly interface, high dynamic range, and modularity. This combination of features and technologies positions the 89441A as a leading solution for professionals seeking accurate and efficient signal analysis in today's fast-paced electronic environment.