Agilent Technologies 89441A manual Source LED

Page 86

Index

block diagram

HT

 

 

 

 

 

block diagrams

OP 12-3

 

 

limitations

OP 14-11

 

 

 

 

overview OP 12-2

 

 

 

 

 

scale at markers softkey

 

HT

 

 

scaling HT

 

 

 

 

 

 

 

auto scaling HT

 

 

 

 

 

x-axis HT

 

 

 

 

 

 

 

x-axis scaling: linear vs. log

HT

X-axis, example OP 8-7

 

 

y-axis scaling

HT

 

 

 

 

 

scan time

 

 

 

 

 

 

 

See sweep time

 

 

 

 

 

screen, cleaning

GS 7-19

 

 

 

search length

HT

 

 

 

 

 

digital demod

OP 6-8

 

 

 

video demod OP 7-13

 

 

 

search length, in digital demod

 

 

OP 17-14

 

 

 

 

 

 

 

self test HT

 

 

 

 

 

 

 

long confidence test

 

HT

 

 

quick confidence test

HT

 

 

self-test log

HT

 

 

 

 

 

serial 1 port

GS 7-15

 

 

 

 

 

serial 1/serial 2 connectors HT

 

serial 2 port

GS 7-7

 

 

 

 

 

serial devices, setting up

GS 6-2

 

serial number, displaying

HT

 

 

serial number, location

HT

 

 

serial port, configuring & cabling

HT

serial x setup softkey

HT

 

 

shifted functions

HT

 

 

 

 

 

shipping GS 7-20

 

 

 

 

 

signal to noise markers

GS 2-4

 

signal track softkey HT

 

 

 

signal tracking HT

 

 

 

 

 

sine freq softkey

HT

 

 

 

 

 

single measurements, running

HT

single range softkeys

HT

 

 

 

single ranging HT

 

 

 

 

 

single sweep, selecting

HT

 

 

SNR, digital/video demodulation

HT

softkeys HT

 

 

 

 

 

 

 

about softkeys

HT

 

 

 

 

 

bracketed softkeys

HT

 

 

 

numeric entry

HT

 

 

 

 

 

softkeys that toggle

HT

 

 

source HT

about the source HT

am modulating the output

HT

 

amplitude, setting

HT

 

 

 

arbitrary waveforms HT

 

 

arbitrary waveforms, duration HT

available source outputs

HT

 

connections HT

 

 

 

 

CW (fixed sine) output

HT

 

dc offset, setting

HT

 

 

 

displaying the source-state table

HT

external signals, using as input HT

output filter, disabling HT

 

 

output impedance & dBm units

HT

output impedance, setting

HT

 

output protection, clearing

HT

 

periodic chirp & frequency span

HT

periodic chirp output HT

 

 

periodic chirp, duration

HT

 

random noise output HT

 

 

sine frequency, setting

HT

 

 

SOURCE LED

HT

 

 

 

turning on and off

HT

 

 

 

source hardkey HT

 

 

 

 

source type softkey

HT

 

 

 

source, setup example GS 5-3

 

span HT

 

 

 

 

 

 

arbitrary spans

HT

 

 

 

cardinal spans

HT

 

 

 

coupling to main length

HT

 

in analog demodulation

OP 15-6

maximum span

HT

 

 

 

setting span HT

 

 

 

 

setting with the marker

HT

 

video demodulation OP 17-11,

 

OP 18-12

 

 

 

 

 

 

See also frequency span

 

 

 

span softkey

HT

 

 

 

 

 

span, 8 MHz (opt. AYH) OP 18-18

 

Spanish softkey

HT

 

 

 

spectral displays

OP 5-1

 

 

 

spectral map

 

 

 

 

 

 

See waterfall

 

 

 

 

 

spectrogram

HT

 

 

 

 

 

about spectrogram displays

HT

 

colorbar HT

 

 

 

 

 

colors, selecting HT

 

 

 

colors, setting the number of HT

displaying

OP 5-1

 

 

 

enhancing

HT

 

 

 

 

 

markers, using

HT

 

 

 

spectrogram (continued)

 

 

 

number of traces, setting HT

 

GS = Getting Started Guide

HT = Online Help

OP = Operator's Guide

(press (Help) key)

Image 86
Contents Agilent Technologies 89441A Getting Started Guide Analyzer at a Glance Iii Front PanelThis page left intentionally blank Saftey Summary Fuses Safety Symbols Notation Conventions This Book This page left intentionally blank Table of Contents General Tasks XiiUsing Online Help To learn about online help Enter the online help system Press HelpTo display help for hardkeys and softkeys To display a related help topic To select a topic from the help index Page Making Simple Noise Measurements To measure random noise Start an averaged measurementTo measure band power Turn on the band power markersTo measure signal to noise ratios Turn on the carrier-to-noise markerCarrier-to-noise ratio normalized to one Hertz Page Using Gating to Characterize a Burst Signal To Use Time Gating Display should now appear as shown belowExamine the second burst Configure the display and the measurementSet up the time gating and examine the first burst Page Measuring Relative Phase To measure the relative phase of an AM signal Measuring Relative Phase To measure the relative phase of an PM signal Zero the offset marker on the carrierCharacterizing a Filter If section for network measurements To set up a frequency response measurementHave option AY7 Press Auto Scale To use the absolute marker To use the relative marker To use the search marker To display phase Specify phase data for the second traceTo display coherence Activate the second trace and select a coherence measurementGeneral Tasks To set up peripherals General Tasks To save data with an internal or RAM disk To recall data with an internal or RAM disk Press ReturnTo format a disk Define a math function Press Math, define F1 To create a math functionDefine a constant To use a math function To display a summary of instrument parameters Press measurement state or input/source statePage Preparing the Analyzer for Use Preparing the Analyzer for Use To chassis ground Analyzer cabinet can subject the operator to lethal voltages Power if it is damaged To do the incoming inspectionPreparing the Analyzer for Use To connect the sections Preparing the Analyzer for Use To install the analyzer To change the if section’s line-voltage switch SelectTo change the RF section’s line-voltage switch To change the if section’s fuse To change the RF section’s fuse RF SectionTo connect the analyzer to a LAN Internet protocol address ReturnTo connect the analyzer to a serial device To connect the analyzer to a parallel deviceTo connect the analyzer to an Gpib device To connect the analyzer to an external monitorConnect the other end of the keyboard cable to the keyboard Set the if section’s power switch to on lTo connect the optional keyboard To connect the optional minimum loss pad To clean the screen To store the analyzerTo transport the analyzer Electricity which can damage electronic componentsIf the if section will not power up If the RF section will not power up If the analyzer’s stop frequency is 10 MHz Page Index Basic HT Gpib SNR Dqpsk HTQAM SNR HTSee also traces FSK Gpib HTGpib LAN Manuals, for this product HT See LAN QAM HT RAMRPG See knobSource LED Sync not Found HT TdmaPSD HT EXT Trigger LED HTVSB Page Agilent 89400-Series Documentation Roadmap Need Assistance?

89441A specifications

The Agilent Technologies 89441A is a high-performance signal analyzer renowned for its versatility in both research and industrial applications. Designed primarily for the testing and analysis of RF signals, this instrument serves as an indispensable tool for engineers and technicians in the telecommunications and electronic testing fields.

One of the key features of the 89441A is its wide frequency range. It operates from 100 kHz up to 1.5 GHz, making it suitable for a vast array of applications, including wireless communications, spectrum monitoring, and signal integrity testing. The 89441A incorporates advanced digital signal processing technologies that ensure accurate and efficient signal analysis, providing users with a high level of precision and reliability in their measurements.

Another significant aspect of the 89441A is its ability to perform real-time analysis. This feature allows users to capture and display transient events with high fidelity, making it easier to analyze complex signals. Coupled with a comprehensive measurement suite, the device is capable of conducting various measurements such as modulation analysis, vector signal analysis, and spectral measurements, making it highly suitable for modern communication systems.

The 89441A also boasts a user-friendly interface that enhances operational efficiency. Its intuitive graphical user interface provides users with easy access to various functions, minimizing the learning curve for new users. Additionally, it supports multiple languages, further broadening its accessibility for global users.

One of the standout characteristics of the 89441A is its high dynamic range, which enables reliable measurements even in the presence of noise. This is critical for applications where signal purity is paramount. Furthermore, its capability to demodulate multiple standards allows it to adapt to evolving technological requirements in various industries.

The flexibility of the 89441A is complemented by its modular design, allowing users to expand its capabilities as their testing needs grow. It supports various plug-in modules and accessories, enabling customization for specific measurement tasks.

In summary, the Agilent Technologies 89441A is an advanced signal analyzer characterized by its wide frequency range, real-time analysis capabilities, user-friendly interface, high dynamic range, and modularity. This combination of features and technologies positions the 89441A as a leading solution for professionals seeking accurate and efficient signal analysis in today's fast-paced electronic environment.