Agilent Technologies 89441A Configure the display and the measurement, Examine the second burst

Page 27

Using Gating to Characterize a Burst Signal

5Configure the display and the measurement:

Press [Display], [2 grids], [more display setup], [grids off].

Press [B], [Measurement Data], [main time] (toggle to ch1 on a 2-channel analyzer). Press [Ref Lvl/Scale], [Y per div], 50, [mV].

Press [Trigger], [trigger type], [internal source]. Press [Time], [main length], 32, [us].

6Set up the time gating and examine the first burst:

Press [Time], [gate on], [gate length], 10, [us]. Press [ch1 gate dly], [MarkerEntry]

Rotate the knob until the gate is at each end of the first burst signal. The display should now appear as shown to the left below.

7Examine the second burst:

Rotate the knob until the gate is at each end of the second burst signal. The display should now appear as shown to the right below.

Note that the [Time] menu must be displayed, the [gate delay] softkey active, and the knob in the Entry mode to move the gate by turning the knob.

Spectrum (top trace) of the burst is derived by gating the time signal (bottom trace). The gate’s delay and length are selected to encompass the burst signal (vertical markers show gate position). Note existence of the first spectral component in the left display and the existence of the other two components in the right display.

3-3

Image 27
Contents Agilent Technologies 89441A Getting Started Guide Analyzer at a Glance Front Panel IiiThis page left intentionally blank Saftey Summary Fuses Safety Symbols Notation Conventions This Book This page left intentionally blank Table of Contents Xii General TasksUsing Online Help Enter the online help system Press Help To learn about online helpTo display help for hardkeys and softkeys To display a related help topic To select a topic from the help index Page Making Simple Noise Measurements Start an averaged measurement To measure random noiseTurn on the band power markers To measure band powerTurn on the carrier-to-noise marker To measure signal to noise ratiosCarrier-to-noise ratio normalized to one Hertz Page Using Gating to Characterize a Burst Signal Display should now appear as shown below To Use Time GatingConfigure the display and the measurement Set up the time gating and examine the first burstExamine the second burst Page Measuring Relative Phase To measure the relative phase of an AM signal Measuring Relative Phase Zero the offset marker on the carrier To measure the relative phase of an PM signalCharacterizing a Filter To set up a frequency response measurement Have option AY7If section for network measurements Press Auto Scale To use the absolute marker To use the relative marker To use the search marker Specify phase data for the second trace To display phaseActivate the second trace and select a coherence measurement To display coherenceGeneral Tasks To set up peripherals General Tasks To save data with an internal or RAM disk Press Return To recall data with an internal or RAM diskTo format a disk To create a math function Define a constantDefine a math function Press Math, define F1 To use a math function Press measurement state or input/source state To display a summary of instrument parametersPage Preparing the Analyzer for Use Preparing the Analyzer for Use To chassis ground Analyzer cabinet can subject the operator to lethal voltages To do the incoming inspection Power if it is damagedPreparing the Analyzer for Use To connect the sections Preparing the Analyzer for Use To install the analyzer Select To change the if section’s line-voltage switchTo change the RF section’s line-voltage switch To change the if section’s fuse RF Section To change the RF section’s fuseInternet protocol address Return To connect the analyzer to a LANTo connect the analyzer to a parallel device To connect the analyzer to a serial deviceTo connect the analyzer to an external monitor To connect the analyzer to an Gpib deviceSet the if section’s power switch to on l To connect the optional keyboardConnect the other end of the keyboard cable to the keyboard To connect the optional minimum loss pad To store the analyzer To clean the screenElectricity which can damage electronic components To transport the analyzerIf the if section will not power up If the RF section will not power up If the analyzer’s stop frequency is 10 MHz Page Index Basic HT Gpib SNR HT Dqpsk HTQAM SNRSee also traces Gpib HT FSKGpib LAN Manuals, for this product HT See LAN RAM QAM HTSee knob RPGSource LED Tdma Sync not Found HTEXT Trigger LED HT PSD HTVSB Page Agilent 89400-Series Documentation Roadmap Need Assistance?

89441A specifications

The Agilent Technologies 89441A is a high-performance signal analyzer renowned for its versatility in both research and industrial applications. Designed primarily for the testing and analysis of RF signals, this instrument serves as an indispensable tool for engineers and technicians in the telecommunications and electronic testing fields.

One of the key features of the 89441A is its wide frequency range. It operates from 100 kHz up to 1.5 GHz, making it suitable for a vast array of applications, including wireless communications, spectrum monitoring, and signal integrity testing. The 89441A incorporates advanced digital signal processing technologies that ensure accurate and efficient signal analysis, providing users with a high level of precision and reliability in their measurements.

Another significant aspect of the 89441A is its ability to perform real-time analysis. This feature allows users to capture and display transient events with high fidelity, making it easier to analyze complex signals. Coupled with a comprehensive measurement suite, the device is capable of conducting various measurements such as modulation analysis, vector signal analysis, and spectral measurements, making it highly suitable for modern communication systems.

The 89441A also boasts a user-friendly interface that enhances operational efficiency. Its intuitive graphical user interface provides users with easy access to various functions, minimizing the learning curve for new users. Additionally, it supports multiple languages, further broadening its accessibility for global users.

One of the standout characteristics of the 89441A is its high dynamic range, which enables reliable measurements even in the presence of noise. This is critical for applications where signal purity is paramount. Furthermore, its capability to demodulate multiple standards allows it to adapt to evolving technological requirements in various industries.

The flexibility of the 89441A is complemented by its modular design, allowing users to expand its capabilities as their testing needs grow. It supports various plug-in modules and accessories, enabling customization for specific measurement tasks.

In summary, the Agilent Technologies 89441A is an advanced signal analyzer characterized by its wide frequency range, real-time analysis capabilities, user-friendly interface, high dynamic range, and modularity. This combination of features and technologies positions the 89441A as a leading solution for professionals seeking accurate and efficient signal analysis in today's fast-paced electronic environment.