Analog Devices AD8342 specifications LO Considerations, Voltage Conversion Gain vs. if Loading

Page 17

 

+V

 

S

AD8342

 

COMM

8

 

2:1

IFOP

7

IFOM

6

COMM

5

 

 

ZL = 100

IF OUT

Z

O

= 50

 

 

 

 

05352-047

 

 

AD8342

 

30

 

 

25

MODELED

 

 

GAIN (dB)

20

 

15

MEASURED

VOLTAGE

 

 

 

Figure 47. Biasing the IF Port Open-Collector Outputs

Using a Center-Tapped Impedance Transformer

+VS

10

5

057

AD8342

COMM 8

IFOP 7

IFOM 6

COMM 5

RFC

 

 

 

 

 

 

IF OUT+

Z

L

=

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF OUT–

 

 

 

 

 

 

RFC

+VS

IMPEDANCE

 

ZL

TRANSFORMING

 

NETWORK

 

 

 

 

 

05352-048

0

 

 

 

05352-

 

100

1000

10

 

 

IF LOAD ()

 

 

Figure 49. Voltage Conversion Gain vs. IF Loading

LO CONSIDERATIONS

The LOIN port provides a 50 Ω load impedance with common- mode decoupling on LOCM. Again, common-grade ceramic

Figure 48. Biasing the IF Port Open-Collector Outputs

Using Pull-Up Choke Inductors

The AD8342 is optimized for driving a 100 Ω load. Although the device is capable of driving a wide variety of loads, to main- tain optimum distortion and noise performance, it is advised that the presented load at the IF outputs is close to 100 Ω. The linear differential voltage conversion gain of the mixer can be modeled as

Av = Gm RLOAD

where:

 

 

 

 

 

Gm

=

1

 

 

gm

π 1

+ gm Re

 

 

RLOAD is the single-ended load impedance.

gm is the transistor transconductance and is equal to 1810/RBIAS.

Re is 15 Ω.

The external RBIAS resistor is used to control the power dissipa- tion and dynamic range of the AD8342. Because the AD8342 has internal resistive degeneration, the conversion gain is pri- marily determined by the load impedance and the on-chip degeneration resistors. Figure 49 shows how gain varies with IF load. The external RBIAS resistor has only a small effect. The most direct way to affect conversion gain is by varying the load impedance. Small loads result in lower gains while larger loads increase the conversion gain. If the IF load impedance is too large it causes a decrease in linearity (P1dB, IP3). In order to maintain positive conversion gain and preserve SFDR perform- ance, the differential load presented at the IF port should remain in the range of ~ 100 Ω to 250 Ω.

capacitors provide sufficient signal coupling and bypassing of the LO interface.

The LO signal needs to have adequate phase noise characteris- tics and low second-harmonic content to prevent degradation of the noise figure performance of the AD8342. An LO plagued with poor phase noise can result in reciprocal mixing, a mecha- nism that causes spectral spreading of the downconverted sig- nal, limiting the sensitivity of the mixer at frequencies close-in to any large input signals. The internal LO buffer provides enough gain to hard-limit the input LO and provide fast switch- ing of the mixer core. Odd harmonic content present on the LO drive signal should not impact mixer performance; however, even-order harmonics cause the mixer core to commutate in an unbalanced manner, potentially degrading noise performance. Simple lumped element low-pass filtering can be applied to help reject the harmonic content of a given local oscillator, as shown in Figure 50. The filter depicted is a common 3-pole Chebyshev, designed to maintain a 1-to-1 source-to-load impedance ratio with no more than 0.5 dB of ripple in the pass band. Other filter structures can be effective as long as the second harmonic of the LO is filtered to negligible levels, for example, ~30 dB below the fundamental.

AD8342

LOCM LOIN COMM

 

 

 

 

 

 

 

RS

 

 

 

 

 

 

 

2

 

 

3

 

 

4

 

 

 

 

 

 

 

 

 

L2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOURCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

C3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOR RS = RL

 

 

 

 

 

 

 

 

 

 

 

C1 =

 

1.864

L2 =

 

1.28RL

 

C3 =

1.834

 

 

 

 

2πf

c

R

L

 

2πf

c

2πf

c

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

fC - FILTER CUTOFF FREQUENCY

 

 

 

 

05352050-

 

 

 

 

 

 

 

 

Figure 50. Using a Low-Pass Filter to Reduce LO Second Harmonic

Rev. 0 Page 17 of 20

Image 17
Contents Functional Block Diagram FeaturesApplications General DescriptionTable of Contents Parameter Conditions Min Typ Max Unit SpecificationsSSB Noise Figure AC PerformanceSpur Table Parameter Rating Absolute Maximum RatingsESD Caution Function PIN Configuration and Function DescriptionsPin No Conversion Gain vs. RF Frequency Typical Performance CharacteristicsInput IP3 vs. RF Frequency AD8342 AD8342 AD8342 LO to RF Leakage vs. LO Frequency, LO Power = 0 dBm Circuit Description Simplified Schematic Showing the Key Elements of the AD8342Input 50 Ω 100 Ω 500 Ω Matched Network Shunt AC InterfacesIf Port Impedance If PortVoltage Conversion Gain vs. if Loading LO ConsiderationsAc loading impedance High if ApplicationsComponent Function Default ConditionsEvaluation Board Ordering Guide Outline Dimensions