FCC/IC STATEMENTS

FEDERAL COMMUNICATIONS COMMISSION AND

INDUSTRY CANADA

RADIO FREQUENCY INTERFERENCE STATEMENTS

Class B Digital Device. This equipment has been tested and found to comply with the limits for a Class B computing device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. If this equipment does cause harmful interference to radio or telephone reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult an experienced radio/TV technician for help.

Caution:

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

To meet FCC requirements, shielded cables and power cords are required to connect this device to a personal computer or other Class B certified device.

This digital apparatus does not exceed the Class B limits for radio noise emission from digital apparatus set out in the Radio Interference Regulation of Industry Canada.

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de classe B prescrites dans le Règlement sur le brouillage radioélectrique publié par Industrie Canada.

1

Page 2
Image 2
Black Box SCSI-2 LVD manual FCC/IC Statements

SCSI-2 LVD specifications

The Black Box SCSI-2 LVD (Low Voltage Differential) represents a significant advancement in data storage and connectivity technology, particularly in environments requiring high performance and reliability. As a variant of the SCSI (Small Computer System Interface) standard, it is optimized for faster data communication, essential for modern computing needs.

One of the main features of SCSI-2 LVD is its capability to handle increased data transfer speeds compared to its predecessors. It supports a maximum data transfer rate of up to 80 MB/s, which is double that of the original SCSI-2 single-ended signaling. This increase in speed is largely due to the differential signaling that LVD employs, allowing for reduced electromagnetic interference and extended cable lengths while maintaining signal integrity. The technology effectively converts the SCSI bus into a more robust system that can accommodate various devices without compromising performance.

The SCSI-2 LVD standard is backward compatible, meaning that it can interface with older SCSI devices, albeit at reduced speeds. This compatibility is significant for users looking to upgrade their systems without discarding existing hardware. This makes SCSI-2 LVD an attractive choice for enterprise environments where legacy systems are common.

Another key characteristic is the flexible cabling options provided by SCSI-2 LVD. It can support cable lengths of up to 12 meters, which is beneficial for large data center configurations where space between devices can be substantial. This extended range does not typically come at the expense of performance, ensuring that data integrity remains high, even over longer distances.

In terms of technology, LVD employs lower voltage levels, which not only contributes to greater power efficiency but also minimizes heat generation in devices. This is particularly crucial in data centers where temperature management can impact hardware longevity and reliability. The combination of lower voltage use and differential signaling makes SCSI-2 LVD well-suited for high-density environments.

Error correction and handshaking features are also integral to SCSI-2 LVD, enhancing its robustness against data loss during transmission. These characteristics make it a reliable choice for applications requiring consistent and high-speed data access, such as server arrays and high-performance computing tasks.

Overall, Black Box SCSI-2 LVD stands out due to its impressive speed, compatibility, and extensive cabling options, positioning it as a reliable solution for demanding data environments. It effectively bridges the gap between legacy systems and modern technology, ensuring that users can optimize their data handling capabilities without significant disruption.