Example 2: The nearby data shows how the weight of a newborn at various numbers of days after birth.

1 Obtain the regression formula and correlation coefficient produced by linear regression of the data.

2 Obtain the regression formula and correlation coefficient produced by logarithmic regression of the data.

3 Predict the weight 350 days after birth based on the regression formula that best fits the trend of the data in accordance with the regression results.

Operation Procedure

Enter the REG Mode and select linear regression:
NumberWeight
of Days

(g)

20

3150

50

4800

80

6420

110

7310

140

7940

170

8690

200

8800

230

9130

260

9270

290

9310

320

9390

N5(REG)1(Lin)Select FreqOff for the statistical frequency setting: 1N(SETUP)dd2(FreqOff)

Input the sample data: 20,3150m(DT)50,4800m(DT) 80,6420m(DT)110,7310m(DT) 140,7940m(DT)170,8690m(DT) 200,8800m(DT)230,9130m(DT) 260,9270m(DT)290,9310m(DT) 320,9390m(DT)

1 Linear Regression
Regression Formula Contant Term a: 12(S-VAR)1(VAR)ee1(a)E

a

4446575758

Regression Coefficient b:12(S-VAR)1(VAR)ee2(b)E

b

1887575758

Correlation Coefficient:12(S-VAR)1(VAR)ee3(r)E

r

0904793561

2 Logarithmic Regression Select logarithmic regression:

12(S-VAR)3(TYPE)2(Log)

x1 =

 

20

Regression Formula Contant Term a: A12(S-VAR)1(VAR)ee1(a)E

a

4209356544

E-51