
Complex Number Calculations
| kAbsolute Value and Argument |
The unit regards a complex number in the form a + bi as a coordinate on a Gaussian plane,
and calculates absolute value Z and argument (arg).
Example | To calculate absolute value (r) and argument (θ) for the complex | |||||||||||||||||||||
| number 3 + 4i, with the angle unit set for degrees | |||||||||||||||||||||
| Imaginary axis | |||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Real axis
AK3(CPLX)2(Abs)
(d+e1(i))w
(Calculation of absolute value)
AK3(CPLX)3(Arg)
(d+e1(i))w
(Calculation of argument)
kConjugate Complex Numbers[OPTN]-[CPLX]-[Conj]A complex number of the form a + bi becomes a conjugate complex number of the form a – bi.
Example To calculate the conjugate complex number for the complex number 2 + 4i
AK3(CPLX)4(Conj) (c+e1(i))w
#The result of the argument calculation differs in accordance with the current angle unit setting (degrees, radians, grads).
20050401