Declination Drift Method of Polar Alignment

This method of polar alignment allows you to get the most accurate alignment on the celestial pole and is required if you want to do long exposure deep-sky astrophotography through the telescope. The declination drift method requires that you monitor the drift of selected stars. The drift of each star tells you how far away the polar axis is pointing from the true celestial pole and in what direction. Although declination drift is simple and straight-forward, it requires a great deal of time and patience to complete when first attempted. The declination drift method should be done after any one of the previously mentioned methods has been completed.

To perform the declination drift method you need to choose two bright stars. One should be near the eastern horizon and one due south near the meridian. Both stars should be near the celestial equator (i.e., 0° declination). You will monitor the drift of each star one at a time and in declination only. While monitoring a star on the meridian, any misalignment in the east-west direction is revealed. While monitoring a star near the east/west horizon, any misalignment in the north-south direction is revealed. It is helpful to have an illuminated reticle eyepiece to help you recognize any drift. For very close alignment, a Barlow lens is also recommended since it increases the magnification and reveals any drift faster. When looking due south, insert the diagonal so the eyepiece points straight up. Insert the cross hair eyepiece and align the cross hairs so that one is parallel to the declination axis and the other is parallel to the right ascension axis. Move your telescope manually in R.A. and DEC to check parallelism.

First, choose your star near where the celestial equator and the meridian meet. The star should be approximately within 1/2 an hour of the meridian and within five degrees of the celestial equator. Center the star in the field of your telescope and monitor the drift in declination.

If the star drifts south, the polar axis is too far east.

If the star drifts north, the polar axis is too far west.

Make the appropriate adjustments to the polar axis to eliminate any drift. Once you have eliminated all the drift, move to the star near the eastern horizon. The star should be 20 degrees above the horizon and within five degrees of the celestial equator.

If the star drifts south, the polar axis is too low.

If the star drifts north, the polar axis is too high.

Again, make the appropriate adjustments to the polar axis to eliminate any drift. Unfortunately, the latter adjustments interact with the prior adjustments ever so slightly. So, repeat the process again to improve the accuracy checking both axes for minimal drift. Once the drift has been eliminated, the telescope is very accurately aligned. You can now do prime focus deep-sky astrophotography for long periods.

NOTE: If the eastern horizon is blocked, you may choose a star near the western horizon, but you must reverse the polar high/low error directions. Also, if using this method in the southern hemisphere, the direction of drift is reversed for both R.A. and DEC.

36

Page 36
Image 36
Celestron C80ED-R, C100ED-R manual Declination Drift Method of Polar Alignment

C100ED-R, C80ED-R specifications

Celestron, a renowned name in the field of astronomy, has built a reputation for producing high-quality telescopes that are accessible to both amateur and professional astronomers alike. Among their impressive lineup are the Celestron C100ED-R and C80ED-R telescopes, both of which are crafted to enhance the observational experience through advanced optics and user-friendly features.

The Celestron C100ED-R, a 100mm refractor telescope, stands out for its premium extra-low dispersion (ED) glass, which delivers exceptional color correction and sharpness. This ED technology minimizes chromatic aberration, ensuring clearer and more colorful celestial images. The telescope boasts a focal length of 900mm, resulting in a focal ratio of f/9. This combination allows for high magnification capabilities while maintaining a wide field of view, perfect for observing both planetary details and deep-sky objects. The robust, yet lightweight design of the C100ED-R makes it highly portable, allowing for convenient stargazing sessions.

On the other hand, the C80ED-R is a 80mm refractor telescope that combines portability with performance. With its 600mm focal length and f/7.5 focal ratio, the C80ED-R is ideal for wide-field observations, making it easy to explore star clusters and large nebulae. Like its larger counterpart, the C80ED-R features ED glass, which prevents color distortion, allowing for clear and crisp images. The compact design is perfect for those who wish to travel or set up in tight spaces, ensuring that astronomy remains accessible.

Both telescopes are equipped with high-quality multi-coated optics that enhance light transmission, resulting in brighter images. Celestron's user-friendly mounting systems allow for smooth tracking of celestial objects, making it easier to follow objects as they move across the night sky. Additionally, these telescopes come with a variety of accessories, including premium eyepieces that enhance the viewing experience, and sturdy tripods that provide stable support during observations.

In summary, both the Celestron C100ED-R and C80ED-R offer exceptional features that cater to a variety of observing needs. With advanced ED optics, high-quality construction, and portability, they are ideal choices for aspiring astronomers looking to explore the wonders of the universe. Whether you're interested in planetary observation or deep-sky exploration, Celestron's C100ED-R and C80ED-R will not disappoint.