Figure 5-3
Latitude Scale

Latitude Scales

The easiest way to polar align a telescope is with a latitude scale. Unlike other methods that require you to find the celestial pole by identifying certain stars near it, this method works off of a known constant to determine how high the polar axis should be pointed. The Advanced Series mount can be adjusted from 30 to 60 degrees (see figure 5-3).

The constant, mentioned above, is a relationship between your latitude and the angular distance the celestial pole is above the northern (or southern) horizon; The angular distance from the northern horizon to the north celestial pole is always equal to your latitude. To illustrate this, imagine that you are standing on the north pole, latitude +90°. The north celestial pole, which has a declination of +90°, would be directly overhead (i.e., 90 above the horizon). Now, let’s say that you move one degree south — your latitude is now +89° and the celestial pole is no longer directly overhead. It has moved one degree closer toward the northern horizon. This means the pole is now 89° above the northern horizon. If you move one degree further south, the same thing happens again. You

would have to travel 70 miles north or south to change your latitude by one degree. As you can see from this example, the distance from the northern horizon to the celestial pole is always equal to your latitude.

If you are observing from Los Angeles, which has a latitude of 34°, then the celestial pole is 34° above the northern horizon. All a latitude scale does then is to point the polar axis of the telescope at the right elevation above the northern (or southern) horizon. To align your telescope:

1.Make sure the polar axis of the mount is pointing due north. Use a landmark that you know faces north.

2.Level the tripod. There is a bubble level built into the mount for this purpose.

NOTE: Leveling the tripod is only necessary if using this method of polar alignment. Perfect polar alignment is still possible using other methods described later in this manual without leveling the tripod.

3.Adjust the mount in altitude until the latitude indicator points to your latitude. Moving the mount affects the angle the polar axis is pointing. For specific information on adjusting the equatorial mount, please see the section “Adjusting the Mount.”

This method can be done in daylight, thus eliminating the need to fumble around in the dark. Although this method does NOT put you directly on the pole, it will limit the number of corrections you will make when tracking an object. It will also be accurate enough for short exposure prime focus planetary photography (a couple of seconds) and short exposure piggyback astrophotography (a couple of minutes).

Pointing at Polaris

This method utilizes Polaris as a guidepost to the celestial pole. Since Polaris is less than a degree from the celestial pole, you can simply point the polar axis of your telescope at Polaris. Although this is by no means perfect alignment, it does get you within one degree. Unlike the previous method, this must be done in the dark when Polaris is visible.

1.Set the telescope up so that the polar axis is pointing north.

2.Loosen the DEC clutch knob and move the telescope so that the tube is parallel to the polar axis. When this is done, the declination setting circle will read +90°. If the declination setting circle is not aligned, move the telescope so that the tube is parallel to the polar axis.

3.Adjust the mount in altitude and/or azimuth until Polaris is in the field of view of the finder.

4.Center Polaris in the field of the telescope using the fine adjustment controls on the mount.

34

Page 34
Image 34
Celestron C80ED-R, C100ED-R manual Pointing at Polaris

C100ED-R, C80ED-R specifications

Celestron, a renowned name in the field of astronomy, has built a reputation for producing high-quality telescopes that are accessible to both amateur and professional astronomers alike. Among their impressive lineup are the Celestron C100ED-R and C80ED-R telescopes, both of which are crafted to enhance the observational experience through advanced optics and user-friendly features.

The Celestron C100ED-R, a 100mm refractor telescope, stands out for its premium extra-low dispersion (ED) glass, which delivers exceptional color correction and sharpness. This ED technology minimizes chromatic aberration, ensuring clearer and more colorful celestial images. The telescope boasts a focal length of 900mm, resulting in a focal ratio of f/9. This combination allows for high magnification capabilities while maintaining a wide field of view, perfect for observing both planetary details and deep-sky objects. The robust, yet lightweight design of the C100ED-R makes it highly portable, allowing for convenient stargazing sessions.

On the other hand, the C80ED-R is a 80mm refractor telescope that combines portability with performance. With its 600mm focal length and f/7.5 focal ratio, the C80ED-R is ideal for wide-field observations, making it easy to explore star clusters and large nebulae. Like its larger counterpart, the C80ED-R features ED glass, which prevents color distortion, allowing for clear and crisp images. The compact design is perfect for those who wish to travel or set up in tight spaces, ensuring that astronomy remains accessible.

Both telescopes are equipped with high-quality multi-coated optics that enhance light transmission, resulting in brighter images. Celestron's user-friendly mounting systems allow for smooth tracking of celestial objects, making it easier to follow objects as they move across the night sky. Additionally, these telescopes come with a variety of accessories, including premium eyepieces that enhance the viewing experience, and sturdy tripods that provide stable support during observations.

In summary, both the Celestron C100ED-R and C80ED-R offer exceptional features that cater to a variety of observing needs. With advanced ED optics, high-quality construction, and portability, they are ideal choices for aspiring astronomers looking to explore the wonders of the universe. Whether you're interested in planetary observation or deep-sky exploration, Celestron's C100ED-R and C80ED-R will not disappoint.