MPLS LDP Session Protection Customizations

Information About MPLS LDP Session Protection

If the LSR is one hop from its neighbor, it is directly connected to its neighbor. The LSR sends out LDP Hello messages as User Datagram Protocol (UDP) packets to all the routers on the subnet. The hello message is called an LDP Link Hello. A neighboring LSR responds to the hello message and the two routers begin to establish an LDP session.

If the LSR is more than one hop from its neighbor, it is not directly connected to its neighbor. The LSR sends out a directed hello message as a UDP packet, but as a unicast message specifically addressed to that LSR. The hello message is called an LDP Targeted Hello. The nondirectly connected LSR responds to the Hello message and the two routers establish an LDP session. (If the path between two LSRs has been traffic engineered and has LDP enabled, the LDP session between them is called a targeted session.)

MPLS LDP Session Protection uses LDP Targeted Hellos to protect LDP sessions. Take, for example, two directly connected routers that have LDP enabled and can reach each other through alternate IP routes in the network. An LDP session that exists between two routers is called an LDP Link Hello Adjacency. When MPLS LDP Session Protection is enabled, an LDP Targeted Hello Adjacency is also established for the LDP session. If the link between the two routers fails, the LDP Link Adjacency also fails. However, if the LDP peer is still reachable through IP, the LDP session stays up, because the LDP Targeted Hello Adjacency still exists between the routers. When the directly connected link recovers, the session does not need to be reestablished, and LDP bindings for prefixes do not need to be relearned.

MPLS LDP Session Protection Customizations, page 32

MPLS LDP Session Protection Customizations

You can modify MPLS LDP Session Protection by using the keywords in the mpls ldp session protection command.

Specifying How Long an LDP Targeted Hello Adjacency Should Be Retained

The default behavior of the mpls ldp session protection command allows an LDP Targeted Hello Adjacency to exist indefinitely following the loss of an LDP Link Hello Adjacency. You can issue the duration keyword to specify the number of seconds (from 30 to 2,147,483) that the LDP Targeted Hello Adjacency is retained after the loss of the LDP Link Hello Adjacency. When the link is lost, a timer starts. If the timer expires, the LDP Targeted Hello Adjacency is removed.

Specifying Which Routers Should Have MPLS LDP Session Protection

The default behavior of the mpls ldp session protection command allows MPLS LDP Session Protection for all neighbor sessions. You can issue either the vrfor for keyword to limit the number of neighbor sessions that are protected.

Enabling MPLS LDP Session Protection on Specified VPN Routing and Forwarding Instances

If the router is configured with at least one VPN routing and forwarding (VRF) instance, you can use the vrf keyword to select which VRF is to be protected. You cannot specify more than one VRF with the mpls ldp session protection command. To specify multiple VRFs, issue the command multiple times.

Enabling MPLS LDP Session Protection on Specified Peer Routers

You can create an access list that includes several peer routers. You can specify that access list with the for keyword to enable LDP Session Protection for the peer routers in the access control list.

MPLS LDP Configuration Guide, Cisco IOS Release 12.4

32

Page 38
Image 38
Cisco Systems 12.4 manual Mpls LDP Session Protection Customizations

12.4 specifications

Cisco Systems has consistently been at the forefront of networking technology, and one of its notable software releases is IOS version 12.4. This version introduced significant enhancements and features that continue to influence networking practices. IOS 12.4 was specifically designed to accommodate the growing demands of network reliability, scalability, and advanced functionalities.

One of the primary characteristics of IOS 12.4 is its enhanced security features. The version integrates advanced security protocols, including improvements in IPsec, which allows for secure communication across potentially insecure networks. Additionally, it supports firewall technologies and access control lists (ACLs), ensuring that organizations can implement stringent security measures tailored to their traffic requirements.

Another defining feature of IOS 12.4 is its support for IPv6. As the internet continued to grow, the need for expanded address space became critical. With IOS 12.4, Cisco provided robust capabilities for transitioning from IPv4 to IPv6, ensuring that network managers could adopt the newer standard without sacrificing performance or reliability. This included support for routing protocols and other networking functions that were essential in an IPv6 environment.

Performance improvements were also a key aspect of IOS 12.4. The release optimized routing protocols, including Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF), to enhance convergence times and reduce latency. This effectively contributed to improved network efficiency and uptime.

Cisco also included advanced Quality of Service (QoS) capabilities in IOS 12.4, allowing organizations to prioritize critical traffic. Features such as class-based weighted fair queuing and low-latency queuing became invaluable for organizations requiring seamless voice and video communications over IP networks. This focus on QoS demonstrated Cisco's understanding of the growing importance of multimedia applications in modern business environments.

With a set of stable and scalable routing features, IOS 12.4 supports a variety of platforms, enabling businesses to deploy it across different networking hardware to suit their needs. The modularity of this IOS version makes it flexible for various applications, from small business networks to large enterprise systems.

In summary, Cisco Systems' IOS 12.4 brought forth a wealth of features aimed at enhancing security, performance, and flexibility. Through improved routing capabilities, strong IPv6 support, and advanced QoS features, this version laid the foundation for many of the networking principles that organizations still utilize today.