Model 1: End-System Detection and Tracking

RADIUS Access‐Accept or Access‐Reject message received from the upstream RADIUS server, is returned without modification to the access edge switch, to permit end‐system access to the network. For MAC authentication, a RADIUS Access‐Accept message is returned to the access edge switch without modification, based on a RADIUS Access‐Accept message received from the upstream RADIUS server or local authorization of MAC authentication requests. The authenticating end‐system is provided access to the network based on the configuration of the access edge switch.

Inline NAC (Layer 2)

For inline NAC utilizing the Layer 2 NAC Controller, an end‐system can be detected in multiple ways. An end‐system can be detected simply by transmitting data traffic not previously seen by the NAC controller. In this case, the traffic is forwarded through the NAC Controller to the traffic destination, and has no impact on the connectivity of the end‐system. In another method, end‐ systems are detected with the authentication of downstream end‐systems via 802.1X, web‐based, and/or MAC authentication on the NAC Controller. These authentication requests may or may not be proxied upstream depending on the NAC configuration.

Inline NAC (Layer 3)

For inline NAC utilizing the Layer 3 NAC Controller, an end‐system is detected simply by transmitting data traffic sourced from an IP address not previously seen by the NAC controller. The traffic is forwarded through the NAC controller to the traffic destination, and has no impact on the connectivity of the end‐system.

Features and Value

There are two key pieces of functionality and value propositions supported by Model 1:

End-System and User Tracking

Model 1 supports the ability to track end‐systems by MAC address, as the device moves from switch port to switch port, and map the device identity to its IP address every time it connects. Furthermore, the associated user can also be mapped to the device and IP address, as long as a username‐based authentication method (802.1X or web‐based authentication) or MAC Registration is implemented with the NAC Gateway, or if end users are configured to login to a Microsoft Windows domain with the NAC Controller using Kerberos snooping functionality.

Using these methods, the Enterasys NAC solution can identify who, what, when, and where devices and users connect to the network. This information is maintained centrally in the NetSight NAC Manager database, providing important historical data that can be used for auditing or troubleshooting purposes. In addition, this information can be easily searched to identify which port a particular user is currently connected to on the network, or which device is currently allocated a particular IP address. This binding (IP address, MAC address, username, location), which is maintained over time for each end‐system, is useful for compliance and auditing purposes, and for planning the subsequent rollout of the next NAC deployment model.

IP-to-ID functionality for Security Information Management (SIM)

This NAC deployment model enables SIM systems such as the Enterasys Dragon Security Command Console (DSCC), to display user‐focused information about assets on the network. Traditionally, SIM systems yield device‐focused information (such as IP address) about detected network threats, through the correlation, normalization, and prioritization of events

2-2 NAC Deployment Models

Page 24
Image 24
Enterasys Networks 9034385 manual Features and Value, Inline NAC Layer, End-System and User Tracking

9034385 specifications

Enterasys Networks 9034385 is a powerful networking component designed to enhance enterprise-level connectivity and ensure robust network management capabilities. This device offers a wide range of features that cater to the demanding requirements of modern businesses, focusing on performance, reliability, and security.

One of the main features of the Enterasys Networks 9034385 is its advanced Layer 2 and Layer 3 switching capabilities, which enable efficient data processing and robust network performance. With support for various VLAN configurations, the device allows organizations to segment their networks effectively, leading to improved security and better traffic management.

Another critical aspect of the 9034385 is its support for high-speed connectivity. The device features multiple gigabit Ethernet ports, providing sufficient bandwidth for data-intensive applications commonly used in enterprise environments. The high-speed connections ensure that users can access applications and data quickly and reliably, minimizing latency issues that can affect productivity.

In terms of management, Enterasys Networks has equipped the 9034385 with advanced monitoring and diagnostic tools. These capabilities allow network administrators to track performance metrics, identify potential issues proactively, and make informed decisions about network resource allocation. The inclusion of SNMP (Simple Network Management Protocol) facilitates seamless integration with network management systems, providing comprehensive oversight of network health and performance.

Security is a paramount consideration for the 9034385, which incorporates advanced security protocols to protect sensitive data. Features such as port security, DHCP snooping, and dynamic ARP inspection help safeguard the network against unauthorized access and cyber threats. Furthermore, the device supports authentication mechanisms like 802.1X, ensuring that only authorized users and devices can connect to the network.

The Enterasys Networks 9034385 also stands out due to its seamless integration with cloud-based services and support for virtualization technologies. This compatibility enables organizations to adopt flexible architectures and manage their resources more efficiently. Additionally, the device is designed with scalability in mind, allowing businesses to expand their networks without significant hardware changes or disruptions.

Overall, the Enterasys Networks 9034385 is a versatile and powerful networking solution ideal for enterprises looking to enhance their network infrastructure while ensuring performance, security, and ease of management. The combination of advanced features and technologies makes it a valuable asset for businesses of all sizes striving for efficient and reliable connectivity.