REFRIGERATION SEQUENCE OF OPERATION

A good understanding of the basic operation of the refrigeration system is essential for the service technician. Without this understanding, accurate troubleshooting of refrigeration system problems will be more difficult and time consuming, if not (in some cases) entirely impossible. The refrigeration system uses four basic principles (laws) in its operation they are as follows:

1.“Heat always flows from a warmer body to a cooler body.”

2.“Heat must be added to or removed from a substance before a change in state can occur”

3.“Flow is always from a higher pressure area to a lower pressure area.”

4.“The temperature at which a liquid or gas changes state is dependent upon the pressure.”

The refrigeration cycle begins at the compressor. Starting the compressor creates a low pressure in the suction line which draws refrigerant gas (vapor) into the compressor. The compressor then “compresses” this refrigerant, raising its pressure and its (heat intensity) temperature.

The refrigerant leaves the compressor through the discharge Line as a hot High pressure gas (vapor). The refrigerant enters the condenser coil where it gives up some of its heat. The condenser fan moving air across the coil’s finned surface facilitates the transfer of heat from the refrigerant to the relatively cooler outdoor air.

When a sufficient quantity of heat has been removed from the refrigerant gas (vapor), the refrigerant will “condense” (i.e. change to a liquid). Once the refrigerant has been condensed (changed) to a liquid it is cooled even further by the air that continues to flow across the condenser coil.

The RAC design determines at exactly what point (in the condenser) the change of state (i.e. gas to a liquid) takes place. In all cases, however, the refrigerant must be totally condensed (changed) to a Liquid before leaving the condenser coil.

The refrigerant leaves the condenser Coil through the liquid line as a warm high pressure liquid. It next will pass through the refrigerant drier (if so equipped). It is the function of the drier to trap any moisture present in the system, contaminants, and large particulate matter.

The liquid refrigerant next enters the metering device. The metering device is a capillary tube. The purpose of the metering device is to “meter” (i.e. control or measure) the quantity of refrigerant entering the evaporator coil.

In the case of the capillary tube this is accomplished (by design) through size (and length) of device, and the pressure difference present across the device.

Since the evaporator coil is under a lower pressure (due to the suction created by the compressor) than the liquid line, the liquid refrigerant leaves the metering device entering the evaporator coil. As it enters the evaporator coil, the larger area and lower pressure allows the refrigerant to expand and lower its temperature (heat intensity). This expansion is often referred to as “boiling”. Since the unit’s blower is moving indoor air across the finned surface of the evaporator coil, the expanding refrigerant absorbs some of that heat. This results in a lowering of the indoor air temperature, hence the “cooling” effect.

The expansion and absorbing of heat cause the liquid refrigerant to evaporate (i.e. change to a gas). Once the refrigerant has been evaporated (changed to a gas), it is heated even further by the air that continues to flow across the evaporator coil.

The particular system design determines at exactly what point (in the evaporator) the change of state (i.e. liquid to a gas) takes place. In all cases, however, the refrigerant must be totally evaporated (changed) to a gas before leaving the evaporator coil.

The low pressure (suction) created by the compressor causes the refrigerant to leave the evaporator through the suction line as a cool low pressure vapor. The refrigerant then returns to the compressor, where the cycle is repeated.

Suction

Discharge

Line

Line

Condenser

EvaporatorCoil

Coil

Metering

Compressor

Device

Refrigerant Drier Liquid

RefrigerantLine

Strainer

17

Page 18
Image 18
Friedrich R-410A service manual Refrigeration Sequence of Operation

R-410A specifications

Friedrich R-410A is an advanced refrigerant widely used in HVAC (Heating, Ventilation, and Air Conditioning) systems, known for its high efficiency and environmental friendliness. As a hydrofluorocarbon (HFC) blend, R-410A has become the preferred alternative to R-22, which is being phased out due to its ozone-depleting potential. One of the main features of R-410A is its high latent heat of vaporization, which allows for efficient heat transfer and improved cooling performance in air conditioning units.

Technologically, R-410A operates at higher pressures than older refrigerants, meaning systems designed for R-410A need to be built with more robust components to safely handle these pressures. This results in a more compact system design that offers enhanced performance and reliability. The dual-component nature of R-410A—composed of difluoromethane (R-32) and pentafluoroethane (R-125)—provides an optimal balance of thermodynamic properties, leading to superior energy efficiency, especially in variable speed applications.

In terms of characteristics, R-410A has a higher cooling capacity, which enables HVAC systems to effectively cool larger spaces or run more efficiently when cooling smaller areas. The refrigerant is non-toxic and non-flammable, which enhances safety during its use. In addition, R-410A has a lower global warming potential relative to other refrigerants, making it a more environmentally responsible choice for modern cooling systems.

Moreover, R-410A systems typically require less refrigerant charge due to their efficiency, contributing to reduced greenhouse gas emissions. The adoption of R-410A aligns with regulatory trends aimed at minimizing the environmental impact of refrigerants in cooling applications.

Overall, the Friedrich R-410A refrigerant embodies a combination of technology and environmental stewardship, making it a cornerstone of contemporary HVAC design. Its ability to provide effective and energy-efficient cooling solutions while being compliant with modern environmental regulations positions R-410A as the refrigerant of choice for engineers and installers focused on sustainability and performance in air conditioning systems.