Redundant paths to server bays

In a dual switch configuration, redundant Ethernet signals from each blade server are routed through the enclosure backplane to separate switches within the enclosure. This configuration provides redundant paths to each server bay.

Redundant Ethernet signals from each blade server are routed through the enclosure backplane to separate switches within the enclosure. However, specific switch port to server mapping varies depending on which type of server blade is installed.

On a heavily used system, using a single uplink port for 32 Ethernet signals causes a traffic bottleneck. For optimum performance, HP recommends using at least one uplink port per switch.

Supported technologies

Layer 2 switching

The switch uses Gigabit Layer 2 switching technology. Layer 2 refers to the Data Link layer of the OSI model, which is concerned with moving data packets across a network by enforcing CSMA/CD. This layer performs:

Ethernet packet framing

MAC addressing

Physical medium transmission error detection

Medium allocation (collision avoidance)

Contention resolution (collision handling)

Layer 2 switching technology allows the switch to look into data packets and redirect them based on the destination MAC address. This reduces traffic congestion on the network because packets, instead of being transmitted to all ports, are transmitted to the destination port only.

IEEE 802.1 Q-based VLAN

The switch provides support for a total of 255 IEEE 802.1Q VLANs for server grouping and isolation. A VLAN is a network segment configured according to a logical scheme rather than a physical layout. VLANs are used to combine any collection of LAN segments into an autonomous user group that appears as a single LAN.

VLANs also logically segment the physical network into different broadcast domains so that packets are forwarded only between ports within the VLAN. This technology enhances performance by conserving bandwidth and improves security by limiting traffic to specific domains. For example, isolate the server blade iLO ports from the rest of the NICs. The iLO ports on Switch 2 are assigned to their own VLAN and go to a dedicated uplink or share an uplink using VLAN tagging.

IMPORTANT: The greater the number of VLANs, the greater the switch CPU utilization. For maximum switch performance, HP recommends being judicious when configuring the number of VLANs.

NOTE: VLAN 4095 is reserved for future functionality.

Spanning Tree Protocol

The switch supports IEEE 802.1D STP, which allows the blocking of links that form loops between switches in a network. When multiple links between switches are detected, a primary link is established. Duplicated links are blocked from use and become standby links. If the primary link fails, the standby link is activated.

Introduction 10

Page 10
Image 10
HP GbE2c manual Supported technologies, Redundant paths to server bays, Layer 2 switching, Ieee 802.1 Q-based Vlan

GbE2c specifications

The HP GbE2c is a high-performance Ethernet Switch designed to meet the increasing demands of data center environments. As a critical component in Hewlett-Packard's networking lineup, the GbE2c provides a seamless blend of speed, reliability, and advanced networking capabilities, making it an essential tool for enterprises aiming to enhance their network infrastructure.

One of the standout features of the HP GbE2c is its support for Gigabit Ethernet, which allows for high-speed data transmission and reduced latency. This switch is designed to support the growing bandwidth needs of modern applications, ensuring that data is transmitted quickly and efficiently across the network. The GbE2c is particularly beneficial for organizations implementing virtualization technologies, as its Gigabit interfaces help in optimizing data flow between virtual machines.

The GbE2c also incorporates advanced Layer 2 and Layer 3 switching capabilities. This ensures that it can handle both basic and more complex networking tasks, such as routing traffic between different VLANs and enabling Internet Protocol (IP) addressing. The switch supports various protocols, enabling seamless integration into a wide range of network environments.

Additionally, the HP GbE2c is equipped with a robust management system that allows network administrators to easily configure and monitor network settings. With its user-friendly interface, administrators can gain insights into traffic patterns, performance metrics, and potential issues, helping to maintain optimal network performance.

Power efficiency is another key characteristic of the HP GbE2c. The switch is designed to minimize power consumption without sacrificing performance, making it a more sustainable choice for data centers aiming to reduce their carbon footprint. This energy-efficient design is crucial for enterprises looking to lower operational costs while maintaining a high level of service.

The HP GbE2c also boasts high availability features, including redundant power supplies and failover options, ensuring that the network remains operational even in the event of a component failure. This reliability is critical for businesses that require uninterrupted network access for their daily operations.

In summary, the HP GbE2c Ethernet Switch combines speed, versatility, and efficiency, making it an ideal choice for businesses seeking to enhance their networking capabilities. Its robust feature set, advanced management options, and focus on energy efficiency position it as a top-tier solution in the competitive networking landscape. Organizations can rely on the GbE2c to deliver high performance and reliability, thus meeting the demands of today's data-intensive environments.