EM78P468N/EM78P468L

8-Bit Microcontroller

6.2.8IOCB0/CNT1PR (Counter 1 Preset Register)

(Address: 0Bh, Bit 0 of R5 = “0”)

Bit 7

 

Bit 6

 

Bit 5

 

Bit 4

 

Bit 3

 

Bit 2

 

Bit 1

 

Bit 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit 7

 

Bit 6

 

Bit 5

 

Bit 4

 

Bit 3

 

Bit 2

 

Bit 1

 

Bit 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit 7 ~ Bit 0: These are Counter 1 buffers which user can read and write. Counter 1 is an 8-bit down-count timer with 8-bit prescaler used to preset the counter and read the preset value. The prescaler is set by the IOC91 register. After an interrupt, it will auto reload the preset value.

6.2.9IOCC0/CNT2PR (Counter 2 Preset Register)

(Address: 0Ch, Bit 0 of R5 = “0”)

Bit 7

Bit 6

 

Bit 5

Bit 4

Bit 3

Bit 2

 

Bit 1

Bit 0

 

 

 

 

 

 

 

 

 

 

 

 

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

 

 

 

 

 

 

 

 

 

 

Bit 7 ~ Bit 0: These are Counter 2 buffers which user can read and write. Counter 2 is an 8-bit down-count timer with 8-bit prescaler used to preset the counter and read the preset value. The prescaler is set by IOC91 register. After an interrupt, it will reload the preset value.

When IR output is enabled, this control register can obtain carrier frequency output. If the Counter 2 clock source is equal to FT , then

Carrier frequency (Fcarrier) =

FT

2 * (preset _ value + 1) * prescaler

6.2.10 IOCD0/HPWTPR (High-Pulse Width Timer Preset Register)

(Address: 0Dh, Bit 0 of R5 = “0”)

Bit 7

Bit 6

 

Bit 5

Bit 4

Bit 3

Bit 2

 

Bit 1

Bit 0

 

 

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

 

 

 

 

 

 

 

 

 

 

Bit 7 ~ Bit 0: These are high-pulse width timer buffers which user can read and write. High-pulse width timer preset register is an eight-bit down-counter with 8-bit prescaler used as IOCD0 to preset the counter and read the preset value. The prescaler is set by the IOCA1 register. After an interrupt, it will reload the preset value.

For PWM or IR application, this control register is set as high pulse width.

If the high-pulse width timer clock source is FT , then

High pulse time = prescaler * (preset _ value + 1)

FT

Product Specification (V1.5) 02.15.2007

17

(This specification is subject to change without further notice)

Page 23
Image 23
IBM MiEM78P468N, MiEM78P468L manual IOCB0/CNT1PR Counter 1 Preset Register, IOCC0/CNT2PR Counter 2 Preset Register

MiEM78P468L, MiEM78P468N specifications

The IBM MiEM78P468N and MiEM78P468L are advanced integrated circuit solutions that cater primarily to the needs of enterprise-level computing systems. These microprocessors are integral in handling a variety of complex tasks, thereby empowering businesses with the efficiency and speed required in today's fast-paced digital environment.

Both models utilize the cutting-edge 78P architecture, which provides impressive performance capabilities. The MiEM78P468N operates at a clock speed of up to 2.2 GHz, while the MiEM78P468L offers a lower clock speed optimized for energy efficiency. This distinction makes the N version ideal for high-performance applications, whereas the L version appeals to scenarios where power consumption is a critical consideration.

A key characteristic of both models is their multi-core architecture, supporting up to four cores. This feature allows for enhanced parallel processing, enabling the handling of multiple tasks simultaneously—a vital requirement for data-intensive applications. Moreover, the inclusion of advanced cache memory arrangements enhances data retrieval speeds significantly, ensuring that applications run smoothly without performance bottlenecks.

These processors also employ cutting-edge thermal management technologies. The dynamic voltage and frequency scaling (DVFS) capabilities ensure that performance can be adjusted in real-time based on workload requirements, helping to minimize energy consumption. This is particularly beneficial in maintaining optimal operating temperatures and prolonging the lifespan of the hardware.

Another notable feature is support for advanced security protocols. Both models incorporate hardware-based security technologies that safeguard data integrity and protect against unauthorized access. This is becoming increasingly important in today's cybersecurity landscape where businesses must prioritize protecting sensitive information.

Additionally, the IBM MiEM78P468N and MiEM78P468L processors are compatible with a wide range of operating systems, facilitating seamless integration into various IT environments. Their robust architecture supports extensive peripheral interconnect protocols, enhancing expandability and connectivity options.

In summary, the IBM MiEM78P468N and MiEM78P468L processors stand out for their performance capabilities, energy efficiency, advanced security features, and versatility. They are well-suited for organizations looking to enhance their computing power while maintaining a balance between performance and power consumption. These microprocessors are instrumental in driving innovation and efficiency in enterprise computing.