EM78P468N/EM78P468L

8-Bit Microcontroller

Ta= -40°C ~85 °C, VDD= 3.0V, GND= 0V

Symbol

Parameter

 

Condition

 

Min.

 

Typ.

 

Max.

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

FXT

Crystal: VDD to 5V

Two cycles with two clocks

 

32.768

 

8M

 

10M

 

kHz

 

 

 

 

 

 

 

 

 

 

 

Fs

Sub-oscillator

Two cycles with two clocks

 

 

32.768

 

 

kHz

 

 

 

 

 

 

 

 

 

 

 

 

External R, Internal C for

R: 300KΩ, internal capacitance

 

270

 

384

 

500

 

kHz

 

Sub-oscillator

 

 

 

 

ERIC

 

 

 

 

 

 

 

 

 

External R, Internal C for

R: 2.2MΩ, internal capacitance

 

22.9

 

32.768

 

42.6

 

kHz

 

 

 

 

 

 

Sub-oscillator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIL

Input Leakage Current for Input pins

VIN = VDD, GND

 

-1

 

0

 

1

 

μA

VIH1

Input High Threshold Voltage

Ports 5, 6, 7, 8

 

1.8

 

 

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL1

Input High Threshold Voltage

Ports 5, 6, 7, 8

 

 

 

0.6

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHT1

Input High Threshold Voltage

/RESET

 

1.8

 

 

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VILT1

Input Low Threshold Voltage

/RESET

 

 

 

0.6

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHT2

Input High Threshold Voltage

TCC, INT0, INT1

 

1.8

 

 

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VILT2

Input Low Threshold Voltage

TCC, INT0, INT1

 

 

 

0.6

 

V

(Schmitt Trigger)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOH1

Output High Voltage (Ports 5~8)

VOH = 2.4V, IROCS=”0”

 

-1.8

 

 

 

mA

 

 

 

 

 

 

 

 

 

 

 

IOL1

Output Low Voltage (Ports 5~8)

VOL = 0.4V, IROCS=”0”

 

 

 

6

 

mA

 

 

 

 

 

 

 

 

 

 

 

IOH1

Output high voltage

VOH = 2.4V, IROCS=”1”

 

-3.5

 

 

 

mA

(P5.7/IROUT pin)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOL2

Output Low Voltage

VOL = 0.4V, IROCS=”1”

 

 

 

12

 

mA

(P5.7/IR OUT pin)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPH

Pull-high current

Pull-high active, input pin at GND

 

-16

 

-23

 

-30

 

μA

 

 

 

 

 

 

 

 

 

 

 

IPL

Pull-low current

Pull-low active, input pin at VDD

 

16

 

23

 

30

 

μA

 

 

 

 

 

 

 

 

 

 

 

 

ISB

Sleep mode current

All input and I/O pins at VDD,

 

 

 

0.1

 

1

 

 

Output pin floating,

 

 

 

 

μA

 

 

 

WDT disabled

 

 

 

 

 

 

 

 

 

 

 

/RESET= 'High', CPU OFF,

 

 

 

 

 

 

 

 

ICC1

Idle mode current

Sub-oscillator clock (32.768kHz)

 

 

4

 

8

 

μA

ON, output pin floating,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LCD enabled, no load

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/RESET= 'High', CPU ON,

 

 

 

 

 

 

 

 

ICC2

Green mode current

Sub-oscillator clock (32.768kHz),

 

 

10

 

20

 

μA

Output pin floating,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WDT enabled, LCD enabled

 

 

 

 

 

 

 

 

ICC3

Normal mode

/RESET= 'High', Fosc=4MHz

 

 

 

0.73

 

1.2

 

mA

(Crystal type, CLKS="0"),

 

 

 

 

 

 

 

Output pin floating

 

 

 

 

 

 

 

 

52

Product Specification (V1.5) 02.15.2007

(This specification is subject to change without further notice)

Page 58
Image 58
IBM MiEM78P468L, MiEM78P468N manual Ta= -40C ~85 C, VDD= 3.0V, GND=

MiEM78P468L, MiEM78P468N specifications

The IBM MiEM78P468N and MiEM78P468L are advanced integrated circuit solutions that cater primarily to the needs of enterprise-level computing systems. These microprocessors are integral in handling a variety of complex tasks, thereby empowering businesses with the efficiency and speed required in today's fast-paced digital environment.

Both models utilize the cutting-edge 78P architecture, which provides impressive performance capabilities. The MiEM78P468N operates at a clock speed of up to 2.2 GHz, while the MiEM78P468L offers a lower clock speed optimized for energy efficiency. This distinction makes the N version ideal for high-performance applications, whereas the L version appeals to scenarios where power consumption is a critical consideration.

A key characteristic of both models is their multi-core architecture, supporting up to four cores. This feature allows for enhanced parallel processing, enabling the handling of multiple tasks simultaneously—a vital requirement for data-intensive applications. Moreover, the inclusion of advanced cache memory arrangements enhances data retrieval speeds significantly, ensuring that applications run smoothly without performance bottlenecks.

These processors also employ cutting-edge thermal management technologies. The dynamic voltage and frequency scaling (DVFS) capabilities ensure that performance can be adjusted in real-time based on workload requirements, helping to minimize energy consumption. This is particularly beneficial in maintaining optimal operating temperatures and prolonging the lifespan of the hardware.

Another notable feature is support for advanced security protocols. Both models incorporate hardware-based security technologies that safeguard data integrity and protect against unauthorized access. This is becoming increasingly important in today's cybersecurity landscape where businesses must prioritize protecting sensitive information.

Additionally, the IBM MiEM78P468N and MiEM78P468L processors are compatible with a wide range of operating systems, facilitating seamless integration into various IT environments. Their robust architecture supports extensive peripheral interconnect protocols, enhancing expandability and connectivity options.

In summary, the IBM MiEM78P468N and MiEM78P468L processors stand out for their performance capabilities, energy efficiency, advanced security features, and versatility. They are well-suited for organizations looking to enhance their computing power while maintaining a balance between performance and power consumption. These microprocessors are instrumental in driving innovation and efficiency in enterprise computing.