Split System Models

7.3Piping Considerations

7.3.1 Refrigerant Loop

! CAUTION

All local codes for handling refrigerant must be followed.

NOTE

As R22 and R407C are similar in properties, proper safety equipment and proper refrigeration tools are required on both types. Check unit nameplate for correct refrigerant type before topping off or recharging a system.

NOTE

Refrigerant R407C uses a POE (polyol ester) lubricant. The R407C refrigerant must be introduced and charged from the cylinder only as a liquid.

NOTE

When installing field piping, care must be taken to protect all refrigerant lines from the atmosphere, especially when using refrigerants with POE oils. Do not allow the piping to stand open to air for more than 15 minutes. Units designed for R407C have a compressor which contains POE oil that is very hygroscopic; that is, it quickly absorbs water from the air. The longer the compressor piping is left open to air, the harder it will be to fully evacuate. If left open too long, the POE oil may need to be replaced before achieving the required vacuum level.

NOTE

Complete all piping and evacuate lines before connecting quick connects when using an optional sweat adapter kit and field installed hard piping.

Follow all proper brazing practices including a dry nitrogen purge to maintain system cleanliness.

All split systems require two refrigerant lines (an insulated copper suction line and a copper liquid line) between the evaporator and the condensing unit.

Two possible methods exist for installing the copper suction and liquid lines.

1.Using an optional Sweat Adapter Kit and hard piping between the two units.

2.Using optional pre-charged line sets.

All refrigeration piping should be installed with high temperature brazed joints. Prevailing good refrigeration practices should be employed for piping supports, leak testing, evacuation, dehydration, and charging of the refrigeration circuits. The refrigeration piping should be isolated from the build- ing by the use of vibration isolating supports.

It is important to handle the pre-charged lines with care so they will not get kinked or damaged. Use tube benders and make all bends before making connections to either end. Coil any excess tubing in a horizontal plane with the slope of the tubing toward the condensing unit.

To prevent tube damage when sealing openings in walls and to reduce vibration transmission, use a soft flexible material to pack around the tubes.

When installing remote condensing units mounted above the evaporator, the suction gas line should be trapped at the evaporator. This trap will retain refrigerant oil in the off cycle. When the unit starts, oil in the trap is carried up the vertical riser and returns to the compressor.

Refrigerant charge requirements: Total refrigerant charge will be required only if units are evacuated during installation or maintenance. Total refrigerant charge = evaporator + lines + condensing unit.

NOTE

All condensing units and 3-ton evaporator units are fully charged with refrigerant. All

23 and 33 kW evaporator units include a nitrogen holding charge only. See Table 19 for field charge required. If field-supplied refrigerant piping is installed, refrigerant must be added to the system.

39

Page 45
Image 45
Liebert ITR installation manual Refrigerant Loop

ITR specifications

The Liebert ITR is an advanced precision cooling unit designed to maintain optimal temperature and humidity levels in mission-critical environments. Engineered for high-performance applications, it is particularly suitable for data centers, telecommunications facilities, and other spaces that require precise climate control to ensure uninterrupted operation of sensitive equipment.

One of the main features of the Liebert ITR is its modular design. This allows for scalability and flexibility, enabling users to customize the system based on their specific cooling needs. The unit can be configured in various sizes and cooling capacities, making it suitable for both small server rooms and large data centers. This adaptability is crucial for organizations that anticipate growth and require an efficient cooling solution that can evolve with their infrastructure.

The Liebert ITR incorporates state-of-the-art technologies to enhance performance and energy efficiency. Among these technologies is the use of a variable speed compressor that adjusts its speed based on the cooling load. This capability not only improves energy efficiency but also significantly reduces operational costs by minimizing electricity consumption when cooling demands fluctuate.

Additionally, the unit features advanced control systems that provide intelligent monitoring and management of temperature and humidity levels. These systems can integrate seamlessly with building management systems (BMS) and can be operated remotely, providing users with real-time insights into the performance of the cooling system. Such connectivity ensures quick identification and resolution of potential issues, thereby reducing downtime and maintaining optimal conditions for critical equipment.

The Liebert ITR utilizes eco-friendly refrigerants, contributing to reduced environmental impact while ensuring compliance with regulatory standards. The unit's design also emphasizes reliability, featuring robust construction and redundant components that enhance longevity and minimize the likelihood of failures.

Furthermore, the Liebert ITR is equipped with advanced filtration systems that maintain air quality by reducing particulate matter and contaminants, ensuring that the atmosphere within data centers is not only cool but also clean—critical for the longevity of sensitive electronic equipment.

Overall, the Liebert ITR is characterized by its innovative design, energy-efficient operation, and comprehensive control capabilities, making it an ideal choice for businesses looking to safeguard their critical infrastructure from overheating and humidity. As climate control becomes increasingly important in the digital age, the Liebert ITR stands out as a reliable solution for maintaining optimal environmental conditions.