Air-Cooled Models

3.0AIR-COOLED MODELS

3.1Condenser Location

The air-cooled condenser should be located for maximum security and maintenance accessibility. Avoid ground level sites with public access or areas that contribute to heavy snow or ice accumula- tions. Utilize centrifugal condensers whenever interior building locations must by used. To assure adequate air supply, it is recommended that condensers be located in a clean air area, away from loose dirt and foreign matter that may clog the coil. In addition, condensers should not be located in the vicinity of steam, hot air, or fume exhausts. Also, condensers should be located no closer than three feet (1 meter) from a wall, obstruction, or adjacent unit.

Install condensers in a level position to assure proper refrigerant flow and oil return. For roof instal- lation, mount condensers on steel supports in accordance with local codes. To minimize sound and vibration transmission, mount steel supports across load bearing walls. For ground installation, a concrete pad will provide adequate support. Condenser legs have mounting holes for securing the con- denser to the steel supports or concrete pad.

3.2Electrical Connections

Refer to equipment nameplate regarding wire size and circuit protection requirements. Refer to elec- trical schematic when making connections. Make all wiring and electrical connection in accordance with local and national codes.

! WARNING

Risk of electric shock. Can cause injury or death.

Disconnect all local and remote electric power before working within the unit. Use a voltmeter to make sure power is turned off before making any electrical connections.

3.2.1Line Voltage

Line voltage electrical service is required for all air-cooled condensers at the location of the condenser. This power supply does not have to be the same voltage as the indoor unit. This separate power source may be 208, 230, 460, or 575 V, 60 Hz; or 200, 230, or 380/415 V, 50 Hz. The disconnect switch may be factory-supplied and mounted in the electrical panel or field-supplied and mounted per local and national codes.

3.2.2Low Voltage

A control interlock between the condenser and the indoor unit is required and is connected between 70 and 71 in the handy box of the indoor unit and the electric panel of the air-cooled condenser. NEC Class 1 wiring is required.

3.2.3Lee-Temp/Flood Back Head Pressure Control Condensers

Lee-Temp condensers require a separate power supply for the heated receivers. This power supply is connected to the electrical connection box on the end of the receiver.

14

Page 20
Image 20
Liebert ITR Condenser Location, Line Voltage, Low Voltage, Lee-Temp/Flood Back Head Pressure Control Condensers

ITR specifications

The Liebert ITR is an advanced precision cooling unit designed to maintain optimal temperature and humidity levels in mission-critical environments. Engineered for high-performance applications, it is particularly suitable for data centers, telecommunications facilities, and other spaces that require precise climate control to ensure uninterrupted operation of sensitive equipment.

One of the main features of the Liebert ITR is its modular design. This allows for scalability and flexibility, enabling users to customize the system based on their specific cooling needs. The unit can be configured in various sizes and cooling capacities, making it suitable for both small server rooms and large data centers. This adaptability is crucial for organizations that anticipate growth and require an efficient cooling solution that can evolve with their infrastructure.

The Liebert ITR incorporates state-of-the-art technologies to enhance performance and energy efficiency. Among these technologies is the use of a variable speed compressor that adjusts its speed based on the cooling load. This capability not only improves energy efficiency but also significantly reduces operational costs by minimizing electricity consumption when cooling demands fluctuate.

Additionally, the unit features advanced control systems that provide intelligent monitoring and management of temperature and humidity levels. These systems can integrate seamlessly with building management systems (BMS) and can be operated remotely, providing users with real-time insights into the performance of the cooling system. Such connectivity ensures quick identification and resolution of potential issues, thereby reducing downtime and maintaining optimal conditions for critical equipment.

The Liebert ITR utilizes eco-friendly refrigerants, contributing to reduced environmental impact while ensuring compliance with regulatory standards. The unit's design also emphasizes reliability, featuring robust construction and redundant components that enhance longevity and minimize the likelihood of failures.

Furthermore, the Liebert ITR is equipped with advanced filtration systems that maintain air quality by reducing particulate matter and contaminants, ensuring that the atmosphere within data centers is not only cool but also clean—critical for the longevity of sensitive electronic equipment.

Overall, the Liebert ITR is characterized by its innovative design, energy-efficient operation, and comprehensive control capabilities, making it an ideal choice for businesses looking to safeguard their critical infrastructure from overheating and humidity. As climate control becomes increasingly important in the digital age, the Liebert ITR stands out as a reliable solution for maintaining optimal environmental conditions.