APPENDIX A

Celestial Coordinates

It is helpful to understand how to locate celestial objects as they move across the sky.

A celestial coordinate system was created that maps an imaginary sphere surrounding the Earth upon which all stars appear to be placed. This mapping system is similar to the system of latitude and longitude on Earth surface maps.

In mapping the surface of the Earth, lines of longitude are drawn between the North and South Poles, and lines of latitude are drawn in an East- West direction, parallel to the Earth’s equator. Similarly, imaginary lines have been drawn to form a latitude and longitude grid on the celestial sphere. These lines are known as Right Ascension and Declination.

North

 

 

 

 

 

 

 

 

 

 

 

Celestial

 

 

 

+90

Dec.

 

 

 

 

Pole

 

 

 

 

 

 

 

 

Star

 

 

 

 

 

 

 

 

 

 

(Vicinity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Polaris)

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

c

 

 

1

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

14

13

12

 

 

11

10

o

 

 

 

15

 

 

n

 

 

17 16

 

 

 

 

 

 

 

9

8

 

Earth’s

 

 

 

 

 

 

7

18

Rotation

 

 

 

 

 

 

 

6

19

 

 

 

 

 

 

4

5

20

21

 

 

 

 

 

 

2

3

Celestial

22

23

 

 

0

1

 

 

 

 

 

 

 

Equator

Right Ascension

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 Dec.

 

 

 

 

 

 

 

 

 

 

 

South

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

Celestial

 

 

-

 

90

Dec.

 

 

 

 

Pole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Celestial Sphere.

The celestial map also contains two poles and an equator just like a map of the Earth. The poles of this coordinate system are defined as those two points where the Earth’s north and south poles (i.e., the Earth's axis), if extended to infinity, would cross the celestial sphere. Thus, the North Celestial Pole (1, Fig. 25) is that point in the sky where an extension of the North Pole intersects the celestial sphere. This point in the sky is located very near the North Star, Polaris. The celestial equator (2, Fig. 25) is a projection of the Earth’s equator onto the celestial sphere.

So just as an object's position on the Earth’s surface can be located by its latitude and longitude, celestial objects may also be located using Right Ascension and Declination. For example, you could locate Los Angeles, California, by its latitude (+34°) and longitude (118°). Similarly, you could locate the constellation Ursa Major (the Big Dipper) by its Right Ascension (11hr) and its Declination (+50°).

Right Ascension (R.A.): This celestial version of longitude is measured in units of hours (hr), minutes (min) and seconds (sec) on a 24-hour "clock" (similar to how Earth's time zones are determined by longitude lines). The "zero" line was arbitrarily chosen to pass through the constellation Pegasus— a sort of cosmic Greenwich meridian. R.A. coordinates range from 0hr 0min 0sec to 23hr 59min 59sec. There are 24 primary lines of R.A., located at 15-degree intervals along the celestial equator. Objects located further and further East of the zero R.A. grid line (0hr 0min 0sec) carry higher R.A. coordinates.

Declination (Altitude): This celestial version of latitude is measured in degrees, minutes, and seconds (e.g., 15° 27' 33"). Dec. locations north of the celestial equator are indicated with a plus (+) sign (e.g., the Dec. of the North celestial pole is +90°). Dec. locations south of the celestial equator are indicated with a minus (–) sign (e.g., the Dec. of the South celestial pole is –90°). Any point on the celestial equator (such as the the constellations of Orion, Virgo, and Aquarius) is said to have a Declination of zero, shown as 0° 0' 0."

Locating the Celestial Pole

To get basic bearings at an observing location, take note of where the Sun rises (East) and sets (West) each day. After the site is dark, face North by pointing your left shoulder toward where the Sun set. To precisely point at the pole, find the North Star (Polaris) by using the Big Dipper as a guide (Fig. 26).

IMPORTANT NOTE: For almost all

 

 

astronomical observing requirements,

Little Dipper

Polaris

approximate settings are acceptable. Do

 

not allow undue attention to precise

 

 

alignment of the telescope to interfere with

 

 

your basic enjoyment of the instrument.

Big Dipper

Cassiopeia

 

 

 

Fig. 26: Locating Polaris.

 

40

Page 40
Image 40
Meade DSX Series instruction manual Celestial Coordinates, Locating the Celestial Pole

DSX Series specifications

The Meade DSX Series telescopes are designed to offer enthusiasts and newcomers an engaging astronomical experience. Combining user-friendly features with advanced technology, this series makes stargazing both accessible and enjoyable.

One of the standout characteristics of the DSX Series is its portable design. Lightweight and compact, these telescopes can be easily transported to various observation sites. This mobility is essential for amateur astronomers who wish to explore the night sky away from light pollution. The telescopes can be set up quickly, making them a great option for impromptu stargazing sessions.

The DSX Series features a computerized mount, integrating the latest GoTo technology. With this advanced system, users can effortlessly locate and track celestial objects. Simply input a desired target, and the telescope's automated system will move to point directly at it. This feature significantly enhances the stargazing experience, eliminating the often tedious task of manually finding stars, planets, and other phenomena.

The optical quality of the Meade DSX telescopes is another key highlight. Sporting high-quality glass optics, they deliver clear and bright images of celestial objects. The series includes various models designed for different levels of observation, from the casual stargazer to those interested in deep-sky observation. Each model provides excellent light-gathering capabilities, allowing users to see beyond the obvious, uncovering the beauty of distant galaxies, nebulas, and star clusters.

In addition to its impressive optical system, the DSX Series also features a straightforward intuitive control panel. This user-centered design assists beginners in navigating settings and options with ease. Moreover, the included software helps data recording and object identification, further enriching the learning experience.

Finally, Meade's commitment to durability and quality ensures that the DSX Series is built to last. With robust materials and thoughtful engineering, these telescopes can withstand outdoor conditions, providing reliable functionality for years to come.

In summary, the Meade DSX Series stands out with its portable design, advanced GoTo technology, high-quality optics, user-friendly controls, and durable construction, making it an excellent choice for anyone looking to explore the wonders of the universe. Whether you are an experienced astronomer or just starting your celestial journey, the DSX Series offers an outstanding platform for exploration and discovery.