General Description

Power Supply Limit Considerations

1

!

Caution

The MVME956AC chassis is supplied with a 550-watt, 3-output switching power supply. The power supply is capable of higher output currents than the interconnection to the backplane. As designed, the enclosure +5 Vdc output is rated at 60 amperes, the +12 Vdc output at 10 amperes (16 peak), and the -12 Vdc output at 10 amperes.

The current rating for each individual output must not be exceeded, and the total power supply output power must not exceed 550 watts. When calculating the 5-volt current, remember to include the backplane termination resistors.

The system integrator must ensure that the installed peripheral devices and VME module set do not exceed the power supply rating.

VME Bus Backplane Description and Specifications

The MVME956AC chassis contains one 12-slot, full 64-bit VME bus backplane mounted to the left of the peripheral device area. The backplane can accommodate up to 12 VME modules. It uses all signal and power lines for VME bus connectors P1 and P2.

Table 1-2. 12-Slot VME Bus Backplane Specifications

Characteristics

Specifications

 

 

Power consumption

5W (1.0 A max @ +5V), required by active

(without device

termination

modules)

 

 

 

Connectors

24 sockets: 160-pin IEC1076-4_xxx 2.54mm

Device sockets

connectors

 

Socket spacing (center-to-center): 0.8 inch

 

 

http://www.mcg.mot.com/literature

1-5

Page 17
Image 17
Motorola MVME956UM2, MVME956AC VME Bus Backplane Description and Specifications, Power Supply Limit Considerations

MVME956AC, MVME956UM2 specifications

The Motorola MVME956UM2 and MVME956AC are advanced embedded computing platforms designed for high-performance industrial and military applications. These ruggedized computing solutions cater to various sectors, including telecommunications, aerospace, and defense, providing a reliable foundation for real-time processing and data acquisition tasks.

One of the distinguishing features of the MVME956UM2 and MVME956AC is their robust architecture, based on the PowerPC processor. The MVME956UM2 generally offers a PowerPC 750 microprocessor, operating at clock speeds of up to 600 MHz, while the MVME956AC may leverage a higher performance variant for enhanced computing capabilities. This processor architecture enables efficient execution of complex applications and multi-threading operations, making it suitable for demanding environments.

Both models support advanced memory configurations, accommodating up to 512 MB of RAM and several megabytes of non-volatile flash memory. This flexibility allows developers to design applications with substantial data handling requirements, such as real-time analytics or extensive data logging.

Another notable aspect of the MVME956 series is its modular design, which facilitates easy integration with various I/O modules and communication interfaces. The board features multiple Ethernet ports supporting both 10/100Base-T and Gigabit Ethernet, enabling high-speed data transfer across networks. Additionally, with support for PCI, USB, and other serial communication standards, developers can create customized solutions tailored for specific application needs.

Durability is one of the key characteristics of the MVME956 models. They are built to withstand extreme environmental conditions, including a wide temperature range, vibration, and shock. This makes them ideal for use in aircraft, naval vessels, and other challenging settings where reliability is paramount.

The MVME956AC also offers enhanced graphics support, with the ability to drive advanced visual displays for monitoring and control tasks. This feature is particularly advantageous in situations where real-time visual feedback is critical, such as in control rooms or manned military operations.

In summary, the Motorola MVME956UM2 and MVME956AC represent powerful, versatile computing platforms tailored for demanding applications. With their advanced processing capabilities, expansive memory, rugged design, and extensive I/O options, these embedded systems are well-suited for a variety of industrial and defense environments, making them a preferred choice among engineering professionals.