Removal and Replacement Procedures

5

Overview

This chapter provides recommended procedures for the removal and replacement of MVME956AC chassis major assemblies. For identification and location of the assemblies and parts mentioned in these procedures, refer to the drawings and parts lists in Chapter 7.

The removal/replacement procedures are organized and presented in the following order:

Power Supply

Disk and Tape Drive

VME64x Bus Backplane

Cooling Fan(s)

Optional Air Filter Kit

Following ESD and Safety Procedures

Use ESD

Wrist Strap

Motorola strongly recommends that you use an antistatic wrist strap and a conductive foam pad when installing or upgrading the system. Electronic components, such as disk drives, computer boards, and memory modules, can be extremely sensitive to ESD. After removing the component from the system or its protective wrapper, place the component flat on a grounded, static-free surface, and in the case of a board, component-side up. Do not slide the component over any surface.

If an ESD station is not available, you can avoid damage resulting from ESD by wearing an antistatic wrist strap (available at electronics stores) that is attached to an unpainted metal part of the system chassis.

5-1

Page 38
Image 38
Motorola MVME956AC, MVME956UM2 user manual Removal and Replacement Procedures

MVME956AC, MVME956UM2 specifications

The Motorola MVME956UM2 and MVME956AC are advanced embedded computing platforms designed for high-performance industrial and military applications. These ruggedized computing solutions cater to various sectors, including telecommunications, aerospace, and defense, providing a reliable foundation for real-time processing and data acquisition tasks.

One of the distinguishing features of the MVME956UM2 and MVME956AC is their robust architecture, based on the PowerPC processor. The MVME956UM2 generally offers a PowerPC 750 microprocessor, operating at clock speeds of up to 600 MHz, while the MVME956AC may leverage a higher performance variant for enhanced computing capabilities. This processor architecture enables efficient execution of complex applications and multi-threading operations, making it suitable for demanding environments.

Both models support advanced memory configurations, accommodating up to 512 MB of RAM and several megabytes of non-volatile flash memory. This flexibility allows developers to design applications with substantial data handling requirements, such as real-time analytics or extensive data logging.

Another notable aspect of the MVME956 series is its modular design, which facilitates easy integration with various I/O modules and communication interfaces. The board features multiple Ethernet ports supporting both 10/100Base-T and Gigabit Ethernet, enabling high-speed data transfer across networks. Additionally, with support for PCI, USB, and other serial communication standards, developers can create customized solutions tailored for specific application needs.

Durability is one of the key characteristics of the MVME956 models. They are built to withstand extreme environmental conditions, including a wide temperature range, vibration, and shock. This makes them ideal for use in aircraft, naval vessels, and other challenging settings where reliability is paramount.

The MVME956AC also offers enhanced graphics support, with the ability to drive advanced visual displays for monitoring and control tasks. This feature is particularly advantageous in situations where real-time visual feedback is critical, such as in control rooms or manned military operations.

In summary, the Motorola MVME956UM2 and MVME956AC represent powerful, versatile computing platforms tailored for demanding applications. With their advanced processing capabilities, expansive memory, rugged design, and extensive I/O options, these embedded systems are well-suited for a variety of industrial and defense environments, making them a preferred choice among engineering professionals.