Cheetah 10K.6 FC Product Manual, Rev. B

31

7.0Defect and error management

The drive, as delivered, complies with this product manual. The read error rates and specified storage capaci- ties are not dependent upon use of defect management routines by the host (initiator).

Defect and error management in the SCSI protocol involves the drive internal defect/error management and FC-AL system error considerations (errors in communications between the initiator and the drive). Tools for use in designing a defect/error management plan are briefly outlined in this section. References to other sections are provided when necessary.

7.1Drive internal defects/errors

During the initial drive format operation at the factory, media defects are identified, tagged as being unusable, and their locations recorded on the drive primary defects list (referred to as the “P’ list and also as the ETF defect list). At factory format time, these known defects are also reallocated, that is, reassigned to a new place on the medium and the location listed in the defects reallocation table. The “P” list is not altered after factory formatting. Locations of defects found and reallocated during error recovery procedures after drive shipment are listed in the “G” list (defects growth list). The “P” and “G” lists may be referenced by the initiator using the Read Defect Data command.

Details of the SCSI commands supported by the drive are described in the Fibre Channel Interface Manual. Also, more information on the drive Error Recovery philosophy is presented in the Fibre Channel Interface Manual.

7.2Drive error recovery procedures

When an error occurs during drive operation, the drive, if programmed to do so, performs error recovery proce- dures to attempt to recover the data. The error recovery procedures used depend on the options previously set in the Error Recovery Parameters mode page. Error recovery and defect management may involve using sev- eral SCSI commands described in the Fibre Channel Interface Manual. The drive implements selectable error recovery time limits required in video applications.

The error recovery scheme supported by the drive provides a way to control the total error recovery time for the entire command in addition to controlling the recovery level for a single LBA. The total amount of time spent in error recovery for a command can be limited using the Recovery Time Limit bytes in the Error Recovery mode page. The total amount of time spent in error recovery for a single LBA can be limited using the Read Retry Count or Write Retry Count bytes in the Error Recovery mode page.

The drive firmware error recovery algorithms consists of 12 levels for read recoveries and five levels for write. Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re- read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and write retry counts.

Table 2 equates the read and write retry count with the maximum possible recovery time for read and write recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov- ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted against the recovery time limit.

Page 41
Image 41
Seagate ST373307FC, ST336607FC Defect and error management, Drive internal defects/errors, Drive error recovery procedures

ST336607FC, ST373307FC, ST3146807FC specifications

The Seagate ST373307FC, ST3146807FC, and ST336607FC are robust hard disk drives designed for enterprise environments where reliability and performance are critical. Each model offers distinct features suited to various data storage needs, reflecting Seagate's commitment to innovation in storage technology.

The ST373307FC is a 73GB Fibre Channel hard drive that operates at 15,000 RPM, making it exceptionally fast for read and write operations. This drive employs a 4GB cache, enhancing its performance by allowing quicker access to frequently used data. With a 3.5-inch form factor, the ST373307FC is built for high-density environments, delivering reliable access to data. Its Fibre Channel interface supports high-speed connections, essential for data-intensive applications like databases and virtualization.

Next in line, the ST3146807FC offers a capacity of 146GB, also operating at 15,000 RPM. This drive features an 8GB cache, which significantly improves its data transfer rates, making it ideal for transactional workloads. The ST3146807FC is engineered to minimize latency and maximize throughput, ensuring that enterprises can access critical data swiftly and efficiently. Additionally, its rugged construction is designed to withstand the demands of continuous operation, providing peace of mind for businesses with strict uptime requirements.

Lastly, the ST336607FC has a substantial storage capacity of 300GB and shares the 15,000 RPM operational speed that characterizes this high-performance line. With a similar 8GB cache as the ST3146807FC, it offers excellent performance for read-intensive and write-heavy applications. The ST336607FC is also designed with enhanced thermal management features, supporting cooler operations in densely packed server environments. This model is particularly suited for applications such as data warehousing and online transaction processing, where speed and reliability are paramount.

Each of these drives utilizes advanced technologies like Native Command Queuing (NCQ), which optimizes the order of read and write requests. These features, combined with Seagate's reputation for durability and performance, make the ST373307FC, ST3146807FC, and ST336607FC excellent choices for enterprise applications requiring high-speed data access and exceptional reliability. In environments where data integrity and uptime are critical, these drives provide the robust performance necessary to meet demanding storage needs.