6.4.3Effective altitude (sea level)

a.Operating

–1,000 to +10,000 feet (–305 to +3,048 meters)

b.Non-operating

–1,000 to +40,000 feet (–305 to +12,210 meters)

6.4.4Shock and vibration

Shock and vibration limits specified in this document are measured directly on the drive chassis. If the drive is installed in an enclosure to which the stated shock and/or vibration criteria is applied, resonances may occur internally to the enclosure resulting in drive movement in excess of the stated limits. If this situation is apparent, it may be necessary to modify the enclosure to minimize drive movement.

The limits of shock and vibration defined within this document are specified with the drive mounted by any of the four methods shown in Figure 11, and in accordance with the restrictions of Section 8.3. Orientation of the side nearest the LED may be up or down.

6.4.4.1Shock

a.Operating—normal

The drive, as installed for normal operation, shall operate error free while subjected to intermittent shock not exceeding 15 Gs at a maximum duration of 11 msec (half sinewave). The drive, as installed for normal operation, shall operate error free while subjected to intermittent shock not exceeding 20 Gs at a maximum duration of 2 msec (half sinewave). Shock may be applied in the X, Y, or Z axis.

b.Operating—abnormal

Equipment, as installed for normal operation, does not incur physical damage while subjected to intermit- tent shock not exceeding 40 Gs at a maximum duration of 11 msec (half sinewave). Shock occurring at abnormal levels may promote degraded operational performance during the abnormal shock period. Speci- fied operational performance will continue when normal operating shock levels resume. Shock may be applied in the X, Y, or Z axis. Shock is not to be repeated more than two times per second.

c.Non-operating

The limits of non-operating shock shall apply to all conditions of handling and transportation. This includes both isolated drives and integrated drives.

The drive subjected to nonrepetitive shock not exceeding 75 Gs at a maximum duration of 11 msec (half sinewave) shall not exhibit device damage or performance degradation. Shock may be applied in the X, Y, or Z axis.

The drive subjected to nonrepetitive shock not exceeding 250 Gs at a maximum duration of 2 msec (half sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y, or Z axis.

The drive subjected to nonrepetitve shock not exceeding 100 Gs at a maximum duration of 0.5 msec (half sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y, or Z axis.

Savvio SAS Product Manual, Rev. D

33

Page 39
Image 39
Seagate ST936701SS, ST973401SS manual Effective altitude sea level, Shock and vibration

ST936701SS, ST973401SS specifications

The Seagate ST936701SS and ST973401SS are high-performance enterprise hard drives designed for optimal data storage solutions in demanding environments. Both models belong to Seagate's Savvio series, which is renowned for its reliability and efficiency. These drives are tailored for critical applications such as database management, data warehousing, and online transaction processing.

The ST936701SS comes with a storage capacity of 36.4 GB, while the ST973401SS offers a larger capacity of 73.4 GB. This variance allows users to choose the drive that best suits their storage needs without compromising performance. Both drives utilize a 2.5-inch form factor, making them compact and suitable for high-density storage configurations.

A key feature of these drives is their impressive rotational speed of 10,000 RPM, which enhances data access times and improves overall system responsiveness. This speed allows for reduced latency and faster data transfer rates, critical for applications that require quick retrieval of large datasets.

In terms of technology, these drives utilize the Serial Attached SCSI (SAS) interface, which is favored in enterprise settings for its reliability and speed. SAS provides better performance than traditional SATA drives, particularly when dealing with high workloads, as it supports multiple concurrent connections and higher data throughput.

The ST936701SS and ST973401SS are also equipped with advanced features such as Seagate's Native Command Queuing (NCQ), which optimizes the order in which read and write commands are executed. This results in improved performance under multi-tasking conditions, essential for enterprise servers managing multiple requests simultaneously.

Additionally, both drives incorporate features aimed at enhancing data integrity and reliability. They support End-to-End Data Protection and are designed to endure the rigors of continuous operation, with MTBF (Mean Time Between Failures) ratings that bolster their reputation for durability.

Energy efficiency is another notable characteristic, as both drives are designed to reduce power consumption without sacrificing performance. This is particularly important in enterprise environments where power management contributes to lower operational costs.

In conclusion, the Seagate ST936701SS and ST973401SS drives are robust, reliable storage solutions tailored for enterprise applications. With their high performance, advanced technology features, and capacity options, they provide organizations with the scalability and efficiency required in today’s data-driven landscape. Whether it's for critical data management tasks or high-access applications, these drives stand out as a solid choice for any enterprise storage strategy.