9.5.2.3Receiver signal characteristics

Table 28 defines the compliance point requirements of the signal at the receiver end of a TxRx connection as measured into the test loads specified in figure 22 and figure 23.

Table 28: Receiver signal characteristics

Signal characteristic

Units

1.5 Gbps

3.0 Gbps

 

 

 

 

Jitter (see figure 19)b

N/A

See table 29

See table 29

2 x Z2

mV(P-P)

1,200

1,600

 

 

 

 

2 x Z1

mV(P-P)

325

275

 

 

 

 

X1a

UI

0.275

0.275

X2

UI

0.50

0.50

 

 

 

 

Skewd

ps

80

75

Max voltage (non-op)

mV(P-P)

2.000

2.000

 

 

 

 

Minimum OOB ALIGN burst amplitudec

mV(P-P)

240

240

Maximum noise during OOB idle timec

mV(P-P)

120

120

Max near-end crosstalke

mV(P-P)

100

100

 

 

 

 

aThe value for X1 shall be half the value given for total jitter in table 29. The test or analysis shall include the effects of a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1,667).

bThe value for X1 applies at a total jitter probability of 10-12. At this level of probability direct visual comparison between the mask and actual signals is not a valid method for determining compliance with the jitter output requirements.

cWith a measurement bandwidth of 1.5 times the baud rate (i.e. 4.5 GHz for 3.0 Gbps).

dThe skew measurement shall be made at the midpoint of the transition with a repeating 0101b pattern on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Rx+ and Rx- signals. Skew is defined as the time difference between the means of the midpoint crossing times of the Rx+ signal and the Rx- signal.

eNear-end crosstalk is the unwanted signal amplitude at receiver terminals DR, CR, and XR coupled from signals and noise sources other than the desired signal. Refer to SFF-8410.

9.5.2.3.1Jitter

Table 29 defines the maximum allowable jitter.

Table 29: Maximum allowable jitter

1.5 Gbps m, n

 

3.0 Gbps m, n

 

Deterministic jitterq

 

Total jitterc,d,e,f

Deterministic jittere

 

Total jitterc,d,e,f

0.35

 

0.55

0.35

 

0.55

 

 

 

 

 

 

aUnits are in UI.

bThe values for jitter in this section are measured at the average amplitude point.

cTotal jitter is the sum of deterministic jitter and random jitter. If the actual deterministic jitter is less than the maximum specified, then the random jitter may increase as long as the total jitter does not exceed the specified maximum total jitter.

dTotal jitter is specified at a probability of 10-12.

eThe deterministic and total values in this table apply to jitter after application of a single pole high-pass frequency- weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1 667).

fIf total jitter received at any point is less than the maximum allowed, then the jitter distribution of the signals is allowed

to be asymmetric. The total jitter plus the magnitude of the asymmetry shall not exceed the allowed maximum total jitter. The numerical difference between the average of the peaks with a BER < 10-12and the average of the individual events is the measure of the asymmetry. Jitter peak-to-peak measured < (maximum total jitter - Asymmetry).

66

Savvio SAS Product Manual, Rev. D

Page 72
Image 72
Seagate ST973401SS, ST936701SS Receiver signal characteristics, Maximum allowable jitter, Signal characteristic Units Gbps

ST936701SS, ST973401SS specifications

The Seagate ST936701SS and ST973401SS are high-performance enterprise hard drives designed for optimal data storage solutions in demanding environments. Both models belong to Seagate's Savvio series, which is renowned for its reliability and efficiency. These drives are tailored for critical applications such as database management, data warehousing, and online transaction processing.

The ST936701SS comes with a storage capacity of 36.4 GB, while the ST973401SS offers a larger capacity of 73.4 GB. This variance allows users to choose the drive that best suits their storage needs without compromising performance. Both drives utilize a 2.5-inch form factor, making them compact and suitable for high-density storage configurations.

A key feature of these drives is their impressive rotational speed of 10,000 RPM, which enhances data access times and improves overall system responsiveness. This speed allows for reduced latency and faster data transfer rates, critical for applications that require quick retrieval of large datasets.

In terms of technology, these drives utilize the Serial Attached SCSI (SAS) interface, which is favored in enterprise settings for its reliability and speed. SAS provides better performance than traditional SATA drives, particularly when dealing with high workloads, as it supports multiple concurrent connections and higher data throughput.

The ST936701SS and ST973401SS are also equipped with advanced features such as Seagate's Native Command Queuing (NCQ), which optimizes the order in which read and write commands are executed. This results in improved performance under multi-tasking conditions, essential for enterprise servers managing multiple requests simultaneously.

Additionally, both drives incorporate features aimed at enhancing data integrity and reliability. They support End-to-End Data Protection and are designed to endure the rigors of continuous operation, with MTBF (Mean Time Between Failures) ratings that bolster their reputation for durability.

Energy efficiency is another notable characteristic, as both drives are designed to reduce power consumption without sacrificing performance. This is particularly important in enterprise environments where power management contributes to lower operational costs.

In conclusion, the Seagate ST936701SS and ST973401SS drives are robust, reliable storage solutions tailored for enterprise applications. With their high performance, advanced technology features, and capacity options, they provide organizations with the scalability and efficiency required in today’s data-driven landscape. Whether it's for critical data management tasks or high-access applications, these drives stand out as a solid choice for any enterprise storage strategy.