5.2.6.2.1State of the drive prior to testing

The drive must be in a ready state before issuing the Send Diagnostic command. There are multiple reasons why a drive may not be ready, some of which are valid conditions, and not errors. For example, a drive may be in process of doing a format, or another DST. It is the responsibility of the host application to determine the “not ready” cause.

While not technically part of DST, a Not Ready condition also qualifies the drive to be returned to Seagate as a failed drive.

A Drive Not Ready condition is reported by the drive under the following conditions:

Motor will not spin

Motor will not lock to speed

Servo will not lock on track

Drive cannot read configuration tables from the disc

In these conditions, the drive responds to a Test Unit Ready command with an 02/04/00 or 02/04/03 code.

5.2.6.2.2Invoking DST

To invoke DST, submit the Send Diagnostic command with the appropriate Function Code (001b for the short test or 010b for the extended test) in bytes 1, bits 5, 6, and 7.

5.2.6.2.3Short and extended tests

DST has two testing options:

1.short

2.extended

These testing options are described in the following two subsections.

Each test consists of three segments: an electrical test segment, a servo test segment, and a read/verify scan segment.

Short test (Function Code: 001b)

The purpose of the short test is to provide a time-limited test that tests as much of the drive as possible within 120 seconds. The short test does not scan the entire media surface, but does some fundamental tests and scans portions of the media. A complete read/verify scan is not performed and only factual failures will report a fault condition. This option provides a quick confidence test of the drive.

Extended test (Function Code: 010b)

The objective of the extended test option is to empirically test critical drive components. For example, the seek tests and on-track operations test the positioning mechanism. The read operation tests the read head element and the media surface. The write element is tested through read/write/read operations. The integrity of the media is checked through a read/verify scan of the media. Motor functionality is tested by default as a part of these tests.

The anticipated length of the Extended test is reported through the Control Mode page.

22

Savvio SAS Product Manual, Rev. D

Page 28
Image 28
Seagate ST973401SS, ST936701SS manual State of the drive prior to testing, Invoking DST, Short and extended tests

ST936701SS, ST973401SS specifications

The Seagate ST936701SS and ST973401SS are high-performance enterprise hard drives designed for optimal data storage solutions in demanding environments. Both models belong to Seagate's Savvio series, which is renowned for its reliability and efficiency. These drives are tailored for critical applications such as database management, data warehousing, and online transaction processing.

The ST936701SS comes with a storage capacity of 36.4 GB, while the ST973401SS offers a larger capacity of 73.4 GB. This variance allows users to choose the drive that best suits their storage needs without compromising performance. Both drives utilize a 2.5-inch form factor, making them compact and suitable for high-density storage configurations.

A key feature of these drives is their impressive rotational speed of 10,000 RPM, which enhances data access times and improves overall system responsiveness. This speed allows for reduced latency and faster data transfer rates, critical for applications that require quick retrieval of large datasets.

In terms of technology, these drives utilize the Serial Attached SCSI (SAS) interface, which is favored in enterprise settings for its reliability and speed. SAS provides better performance than traditional SATA drives, particularly when dealing with high workloads, as it supports multiple concurrent connections and higher data throughput.

The ST936701SS and ST973401SS are also equipped with advanced features such as Seagate's Native Command Queuing (NCQ), which optimizes the order in which read and write commands are executed. This results in improved performance under multi-tasking conditions, essential for enterprise servers managing multiple requests simultaneously.

Additionally, both drives incorporate features aimed at enhancing data integrity and reliability. They support End-to-End Data Protection and are designed to endure the rigors of continuous operation, with MTBF (Mean Time Between Failures) ratings that bolster their reputation for durability.

Energy efficiency is another notable characteristic, as both drives are designed to reduce power consumption without sacrificing performance. This is particularly important in enterprise environments where power management contributes to lower operational costs.

In conclusion, the Seagate ST936701SS and ST973401SS drives are robust, reliable storage solutions tailored for enterprise applications. With their high performance, advanced technology features, and capacity options, they provide organizations with the scalability and efficiency required in today’s data-driven landscape. Whether it's for critical data management tasks or high-access applications, these drives stand out as a solid choice for any enterprise storage strategy.