• • • •

 

 

 

 

 

 

 

1011 AND

ª@ê1011

 

101 = (BIN)

101 =

1 b

5A OR C3 = (HEX) 5A äC3 =

db H

 

 

 

 

NOT 10110 =

@êâ10110 = 1111101001 b

(BIN)

 

 

 

 

 

 

24 XOR 4 = (OCT) 24 à4 =

20 0

 

 

 

 

 

B3 XNOR

B3 á

 

2D = (HEX)

2D =

FFFFFFFF61 H

DEC

–159.

 

 

 

 

 

o_°(sec, min)

12°39’18.05”

ª12 o39 o18.05

 

[10]

@_

12.65501389

 

 

 

123.678[60]

123.678 @_

123°40’40.8”

 

 

 

3h30m45s +

3 o30 o45 +6 o

 

6h45m36s = [60]

45 o36 =

10°16’21.”

 

 

 

1234°56’12” +

1234 o56 o12 +

 

0°0’34.567” = [60]

0 o0 o34.567 =

1234°56’47.”

 

 

 

3h45m –

3 o45 -1.69 =

 

1.69h = [60]

@_

2°3’36.”

 

 

sin62°12’24” = [10]

s62 o12 o24= 0.884635235

 

 

 

24°[ ” ]

24 o°2

86’400.

 

 

 

1500”[ ’ ]

0 o0 o1500 °3

25.

 

 

 

{},≠

 

 

 

 

 

ª6 @,4

 

x = 6

r =

 

@{[r]

7.211102551

θ = [°]

@≠[θ]

33.69006753

y = 4

 

 

 

 

 

 

@≠[r]

7.211102551

 

 

 

 

 

 

 

 

 

 

 

 

14 @,36

 

r = 14

 

x =

@}[x]

11.32623792

 

 

@≠[y]

8.228993532

θ = 36[°]

 

y =

 

 

 

 

 

@≠[x]

11.32623792

 

 

 

 

 

 

 

ß

V0 = 15.3m/s

ª15.3 *10 +2 @•*

t = 10s

 

ß03 *10 L= 643.3325

1

2

 

V0t+ — gt = ?m

 

2

 

 

¥

125yd = ?m ª125 5 = 114.3

(k, M, G, T, m, Ì, n, p, f)

100m10k= 100 ∑14*

 

10 ∑10=

1’000.

j”

5÷9=ANS

ª”10”21

 

ANS9=

5 /9 =

0.6

[FIX,TAB=1]

*9 =*1

5.0

 

 

 

 

 

 

5 /9 =@j

0.6

 

 

*9 =*2

5.4

 

 

”13

 

 

 

 

*1

5.555555555555510–19

 

*2

0.69

 

 

(SOLV)

k&~£pnzw^ ¢PZWvrab© xy≠°(t, P(, Q(, R()

 

 

DATA

 

 

 

m10

0.

 

 

 

 

 

 

 

95

 

 

 

 

 

 

80

 

 

 

 

 

95 k

1.

 

80

 

 

 

 

 

80 k

2.

 

75

 

 

 

 

 

k

3.

 

75

 

 

 

 

 

75

&3 k

4.

 

75

 

 

 

 

 

50 k

5.

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R~

75.71428571

 

 

x=

 

 

 

 

 

 

σx=

 

 

 

 

Rp

12.37179148

 

 

n=

 

 

 

 

Rn

7.

 

 

Σx=

 

 

 

 

Rz

530.

 

 

Σx2=

Rw

41’200.

 

 

sx=

 

 

 

 

13.3630621

 

 

sx2=

L=

178.5714286

 

 

 

 

 

 

 

(95 -K~)

 

(95–x)

10+50=

 

 

 

sx

 

 

 

/K£*10

 

 

 

 

 

 

 

 

 

 

 

+50 =

64.43210706

x = 60

P(t) ?

°160 °0)= 0.102012

t = –0.5 R(t) ?

°30.5 ±)=

0.691463

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

y

m11

0.

 

 

 

 

 

2

 

 

 

5

 

 

2 &5 k

1.

2

 

 

 

5

 

 

k

2.

12

 

24

 

 

12

&24 k

3.

21

 

40

 

 

21

&40 &3 k

4.

21

 

40

 

 

15

&25 k

5.

21

 

40

 

 

Ra

1.050261097

15

 

25

 

 

Rb

1.826044386

 

 

 

 

 

 

 

 

 

 

Rr

0.995176343

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.541216597

 

 

 

 

 

 

 

 

 

 

15.67223812

x=3 y=?

3 @y

6.528394256

y=46 x=?

46

@x

24.61590706

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

y

m12

0.

 

 

 

 

 

12

 

 

 

41

 

 

12

&41 k

1.

8

 

 

 

13

 

 

8 &13 k

2.

5

 

 

 

2

 

 

5 &2 k

3.

23

 

200

 

 

23

&200 k

4.

15

 

 

 

71

 

 

15

&71 k

5.

 

 

 

 

 

 

 

 

 

 

Ra

5.357506761

 

 

 

 

 

 

 

 

 

 

Rb

–3.120289663

 

 

 

 

 

 

 

 

 

 

0.503334057

x=10 y=?

10

@y

24.4880159

y=22 x=?

22

@x

9.63201409

 

 

 

 

 

 

 

 

 

 

@≠

–3.432772026

 

 

 

 

 

 

 

 

 

 

@≠

9.63201409

 

 

 

 

 

 

 

 

 

 

 

 

 

k[]

 

DATA

 

m10

0.

 

 

 

30

 

40

 

30 k

1.

40

 

40 &2 k

2.

50

 

50 k

3.

DATA

30]]]

45

45 &3 k

X2= 45.

45

]

N2= 3.

45

 

 

60

]60 k

X3= 60.

 

 

 

sin x–0.5

ªsKˆ-0.5

 

Start= 0

∑00 ®®

30.

Start= 180

®180 ®®

150.

 

 

 

 

 

 

m0

 

f(x) = x3–3x2+2

Kˆ™3 -3K

 

 

 

 

ˆL+2 @≤

 

x = –1

1 ±®

–2.

x = –0.5

@≤0.5 ±®

1.125

 

 

 

 

 

A2+B2

@⁄(KAL+

 

 

 

KBL)@≤

 

A = 2, B = 3

2 ®3 ®

3.605551275

A = 2, B = 5

@≤®5 ®

5.385164807

 

 

 

 

 

x = Σnx

Σx2 – nx2

sx =

n – 1

Σy y = n

y2 – ny2

sy =

n – 1

σx =

Σx2

– nx2

 

n

 

 

Σx = x1 + x2 + ··· + xn

Σx2 = x12 + x22 + ··· + xn2

σy =

y2

– ny2

 

n

 

 

Σxy = x1y1 + x2y2 + ··· + xnyn Σy = y1 + y2 + ··· + yn

Σy2 = y12 + y22 + ··· + yn2

Page 6
Image 6
Sharp EL-546W, EL-506W manual →sec, →min, ∑k, M, G, T, m, Ì, n, p, f, ∑Solv, ~£pnzw ¢PZWvrab xy≠→t, P, Q, R

EL-506W, EL-546W specifications

The Sharp EL-506W and EL-546W are advanced scientific calculators designed to meet the needs of students, professionals, and anyone requiring reliable mathematical calculations. Both models feature a blend of user-friendly design and sophisticated technology, making them ideal tools for educational and professional use.

The Sharp EL-506W is equipped with a wide array of functionalities, boasting over 300 scientific functions including standard calculations, statistical analyses, and trigonometric computations. One of its key features is the two-line display that allows users to view both the input and the result simultaneously, enhancing clarity and reducing the likelihood of input errors. It also includes a function for creating equations, enabling seamless entry and editing of mathematical expressions.

On the other hand, the EL-546W offers a broader range of features, with more than 400 functions covering everything from algebraic calculations to calculus. It supports complex number calculations and provides a unique "Math" display mode that shows results in traditional mathematical notation, making it highly suitable for more advanced calculations. The EL-546W also includes built-in memory, which allows users to store and recall calculations effortlessly.

Both calculators employ Sharp's proprietary "Dual-Text" technology, which enables users to perform operations in a clear and logical manner. The ergonomic design of these models ensures comfort during extended use, with a layout that places frequently used buttons within easy reach. The durable construction of the calculators enhances their longevity in various environments, making them reliable companions for daily use.

In terms of power efficiency, the EL-506W and EL-546W are designed to maximize battery life. They feature an automatic power-off function that preserves energy when the calculators are not in use, ensuring that users can rely on them when needed most.

Overall, the Sharp EL-506W and EL-546W stand out for their robust feature sets, user-friendly interfaces, and versatility in handling a diverse range of mathematical functions. Whether you're solving complex equations or performing routine calculations, these scientific calculators provide the precision and reliability necessary for any mathematical task.