reference frequency is converted into a current by 1/4 U208 and Q201. This current programs the effective "resistance" of the two transconductance amplifiers and thus, tunes the center frequency of the filter to follow the reference. The output of the filter is buffered by 4/4 U201. The two remaining op amps in U208 are used to detect signal overloads throughout the amplifier chain.
Reference Oscillator
The reference input signal is ac coupled and buffered by U301. R378 isolates the reference shield from the
U309 is a dual transconductance amplifier in a triangle VCO configuration. U310 selects the integrating capacitor depending on the frequency range. The VCO frequency is determined by the programming current through R318 and therefore by the output voltage of U308. C306 is the phase- locked loop low pass filter which is buffered by U308. U307 is a programmable current source used to charge and discharge C306. The amount of current available to U307 is determined by the VCO control voltage, thus, the tracking rate of the VCO is proportional to the VCO frequency. The triangle output is compared to a constant voltage by U314. 1/2 U313 and 1/2 U312 select f or 2f operation. This signal is fed back to the phase detector U306 to be compared with the reference output of U304. U315 compares the triangle output with a variable voltage to generate a
The output of U315 serves as the reference to a second
The triangle output is divided by R363 and R362 before reaching transconductance amplifier 2/2 U322. The amplitude of the triangle input to this amplifier is enough to just saturate the input and provide a sine wave output. 2/2 U325 then amplifies the sine wave before it goes to the demodulator. U324 is a comparator which generates a square wave
Demodulator and Low Pass Amplifier
Amplifier U402 and switch U401 select the polarity of the reference sine wave. This allows phase shifts up to 360 degrees from the reference input. The sine wave is ac coupled by U403 and inverted by U404. U405 selects alternating polarities of the sine wave at the chopper frequency, f/2 or f/16. This chopped sine wave is then multiplied by the output of the signal amplifiers by the analog multiplier U406. The synchronous output of the multiplier that corresponds to the
Analog Output and Control
The dc output of the demodulator/low pass amplifiers is passed to the reference input of multiplying DAC U502. The DAC is programmed with the appropriate attenuation to calibrate the overall gain of the
A/D's
Analog multiplexer U504 selects the signal to be digitized by the microprocessor. This signal can be either the
31