X7DB8/X7DBE User's Manual

XHardware Monitor Logic

Note: The Phoenix BIOS will automatically detect the type of CPU(s) and hardware monitoring chip used on the motherboard and will display the Hardware Monitoring Screen accordingly. Your Hardware Monitoring Screen may look like the one shown on this page, on P. 4-19, or on P. 4-20, depending on the type of CPU(s) and HW Monitoring chip you are using.

CPU Temperature Threshold

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature

threshold. The options are 75oC, 80oC, 85oC and 90oC. (See the note below.)

Highlight this and hit <Enter> to see monitor data for the following items:

CPU1 Temperature/CPU1 Second Core

CPU2 Temperature/CPU2 Second Core

System Temperature

Fan1-Fan8 Speeds: If the feature of Auto Fan Control is enabled, the BIOS will automatically display the status of the fans indicated in this item.

Fan Speed Control Modes

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vice versa. If the option is set to “3-pin fan”, the fan speed is controlled by voltage. If the op- tion is set to “4-pin”, the fan speed will be controlled by Pulse Width Modulation (PWM). Select “3-pin” if your chassis came with 3-pin fan headers. Select “4-pin” if your chassis came with 4-pin fan headers. Select “Workstation” if your system is used as a Workstation. Select “Server” if your system is used as a Server. Select “Disable” to disable the fan speed control function to allow the onboard fans to constantly run at full speed (12V). The Options are: 1. Disable, 2. 3-pin (Server), 3. 3-pin (Workstation), 4. 4-pin (Server) and 5. 4-pin (Workstation).

Voltage Monitoring

The following items will be monitored and displayed: P12V_VR0/P12V_VR1

FSB VTT/PXH Vcore/ES2B Vcore CPU1Vcore/CPU2Vcore

P3V3

Note: In the Windows OS environment, the Supero Doctor III settings take prece- dence over the BIOS settings. When first installed, Supero Doctor III adopts the temperature threshold settings previously set in the BIOS. Any subsequent changes to these thresholds must be made within Supero Doctor, since the SD III settings override the BIOS settings. For the Windows OS to adopt the BIOS temperature threshold settings, please change the SDIII settings to be the same as those set in the BIOS.

4-18

Page 76
Image 76
SUPER MICRO Computer X7DBE XHardware Monitor Logic, CPU Temperature Threshold, Voltage Monitoring, Fan Speed Control Modes

X7DB8, X7DBE specifications

Super Micro Computer, a global leader in high-performance server and storage solutions, has developed a range of advanced server motherboards, among which the X7DBE and X7DB8 stand out for their robust performance and versatility. Designed for data-intensive applications, these motherboards cater to various markets, including cloud computing, enterprise data centers, and video surveillance.

The X7DBE motherboards are built on the Intel 5000 series chipset and support dual Intel Xeon processors, which provide exceptional processing power for demanding applications. With a maximum memory capacity of 64GB, these motherboards cater to memory-intensive workloads, making them ideal for virtualization and database applications. The X7DBE supports both ECC (Error-Correcting Code) and non-ECC memory, enhancing system reliability and data integrity.

In terms of storage, the X7DBE is equipped with multiple 3.5-inch SATA hard drive bays that allow for substantial data storage capabilities. Additionally, it includes integrated RAID support, enabling users to configure their storage environment for optimal performance and redundancy. The advanced thermal management technology ensures efficient cooling, promoting system stability and longevity even under heavy workloads.

The X7DB8, on the other hand, takes performance a notch higher by providing support for the latest Intel processors and offering enhanced features geared toward high-performance computing. Like the X7DBE, it supports dual processors but extends capability for larger memory configurations, allowing up to 128GB of DDR2 memory. This flexibility makes the X7DB8 an excellent choice for mission-critical applications requiring immense processing power.

Both motherboards come equipped with multiple PCI Express slots, enabling the installation of add-on cards for tasks such as enhanced graphics, additional network interfaces, or dedicated storage controllers, thus providing scalability to meet the growing demands of modern applications. Network connectivity is robust, with several Gigabit Ethernet ports ensuring high-speed data transfer.

In conclusion, Super Micro's X7DBE and X7DB8 motherboards exemplify the perfect blend of performance, scalability, and reliability. With their support for advanced technologies and their ability to handle high workloads, they are ideal solutions for businesses seeking to optimize their server infrastructure. As technology continues to evolve, these motherboards remain pertinent, providing a solid foundation for various applications and future advancements.