Data Sheet: PoweretaTM iQP Series –Single Output Quarter Brick

performance page for the power module of interest. In all conditions, the power module should be operated below the maximum operating temperature shown on

the derating curve. For improved design margins and enhanced system reliability, the power module may be operated at temperatures below the maximum rated operating temperature.

Heat transfer by convection can be enhanced by increasing the airflow rate that the power module experiences. The maximum output current of the power module is a function of ambient temperature (TAMB) and airflow rate as shown in the thermal performance figures on the thermal performance page for the power module of interest. The curves in the figures are shown for natural convection through 3 m/s (600 ft/min). The data for the natural convection condition has been collected at

0.3m/s (60 ft/min) of airflow, which is the typical airflow generated by other heat dissipating components in many of the systems that these types of modules are used in. In the final system configurations, the airflow rate for the natural convection condition can vary due to temperature gradients from other heat dissipating components.

Heatsink Usage: For applications with demanding environmental requirements, such as higher ambient temperatures or higher power dissipation, the thermal performance of the power module can be improved by attaching a heatsink or cold plate. The iQP platform is designed with a base plate with two M3 X 0.5 through- threaded mounting fillings for attaching a heatsink or cold plate. The addition of a heatsink can reduce the airflow requirement; ensure consistent operation and extended reliability of the system. With improved thermal performance, more power can be delivered at a given environmental condition.

Standard heatsink kits are available from TDK Innoveta Inc. for vertical module mounting in two different orientations

(longitudinal – perpendicular to the direction of the pins and transverse – parallel to the direction of the pins). The heatsink kit contains four M3 x 0.5 steel mounting screws and a precut thermal interface pad for improved thermal resistance between the power module and the heatsink. The screws should be installed using a torque- limiting driver set between 0.35-0.55 Nm (3- 5 in-lbs).

The system designer must use an accurate estimate or actual measure of the internal airflow rate and temperature when doing the heatsink thermal analysis. For each application, a review of the heatsink fin orientation should be completed to verify proper fin alignment with airflow direction to maximize the heatsink effectiveness. For TDK Innoveta standard heatsinks, contact TDK Innoveta Inc. for latest performance data.

©2006 TDK Innoveta Inc.

(877) 498-0099

10/15

iQP 3.3V/70A Datasheet 8/3/2006

 

Page 10
Image 10
TDK iQP48070A033 manual 10/15

iQP48070A033 specifications

The TDK iQP48070A033 is a versatile power module designed for high-performance applications requiring efficient and reliable power management. Known for its compact form factor and robust performance, this module is ideal for various electronic devices, including telecommunications equipment, industrial machinery, and consumer electronics.

One of the main features of the iQP48070A033 is its high efficiency. This power module offers an efficiency rating of up to 95%, ensuring minimal energy loss during operation. This not only translates to reduced energy costs but also promotes higher system reliability by minimizing heat generation. The module is designed to handle a wide input voltage range, typically from 36V to 75V, making it suitable for various power supply scenarios.

The iQP48070A033 employs advanced technology to ensure optimal performance and reliability. It includes built-in over-voltage protection, under-voltage lockout, and over-current protection features. These safety mechanisms are crucial for preventing damage to sensitive electronic components when unexpected power conditions arise. Additionally, the power module also features thermal shutdown capability, which protects against overheating in high-load situations.

Another notable characteristic of this module is its compact size, which is vital for modern electronic devices where space can be limited. Its dimensions allow for easy integration into existing systems without compromising on performance. Furthermore, the iQP48070A033 is designed for ease of use, with a straightforward layout that simplifies the design process for engineers and developers.

The TDK iQP48070A033 also boasts a wide operating temperature range, typically from -40°C to +125°C, ensuring its reliability in various environmental conditions. This feature makes it an excellent choice for industries where temperature fluctuations are common, such as automotive and aerospace applications.

Overall, the TDK iQP48070A033 power module stands out for its high efficiency, robust safety features, compact design, and broad operating temperature range. It is a reliable choice for engineers seeking a dependable power solution that can meet the demands of modern electronic applications while maintaining energy efficiency and performance.