
Geometry with the TI-84  Plus Silver Edition
Lines
Creation of primitive geometric objects as Points, Lines, Line Segments and many others is fun and easy using theCabri Jr™. App for the 
Polygons
The information in this section is presented using screen shots from the StudyCards™ and Cabri Jr.Apps for the 
Triangles
This section features theCabri Jr.App for the 
Equilateral: all sides and angles equal
Isosceles: two sides and angles equal
Right: one 90 degree angle
Example: Draw an Isosceles Triangle
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 1  | 
  | 
  | 
  | 2  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 3  | 
  | 
  | 
  | 4  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
Angles
Pythagorean Theorem
1.Create a segment
2.Find the middle of the segment
3.Trace a perpendicular line crossing the middle point
4.Trace a triangle using the two existing points of the segment and a point on the perpendicular line
Circles
This section features theCabri Jr.App for the 
  | 
  | Diameter = 2*(radius)  | 
  | 
  | Circumference = π*(diameter)  | 
Circle  | 
  | Area = π*(radius) 2  | 
Diameter  | 
  | 
  | 
  | Chord  | 
Area
Circle’s
Equation
Geometric Formulas
All Perimeters  | 
  | Triangle  | 
  | 
  | 
  | Rectangular Prism  | Right Circular Cone  | 
  | 
  | 
  | 
  | 
  | ||
P = a+b+c+ ...  | Perimeter  | P = a+b+c  | Surface  | S = 2(hl+lw+hw)  | Lateral  | 
  | πr √  | 
  | 
  | |||||
Square  | 
  | Area  | A =  | 1  | bh  | Volume  | V = lwh  | Surface  | S =  | r2+h2  | 
  | |||
  | Parallelogram  | 2  | 
  | Sphere  | 
  | Total  | 
  | πr √  | r2+h2+πr2  | |||||
Perimeter  | P = 4s  | 
  | 
  | 
  | S = 4 πr2  | Surface  | S =  | |||||||
Area  | A = s2  | Perimeter  | P = a+b+c+d  | Surface  | Volume  | V =  | 
  | 1  | πr2 h  | |||||
Rectangle  | 
  | Area  | A = bh  | Volume  | V = 4 πr3  | Frustum of a Cone  | 3  | πh(r2+rR+R2)  | ||||||
Perimeter  | P = 2l+2w  | Trapezoid  | 
  | 
  | 
  | 
  | 3  | Volume  | V =  | 
  | 1  | |||
  | 
  | 
  | 
  | 3  | ||||||||||
Area  | A = lw  | Perimeter  | P = a+b+c+d  | Right Circular Cylinder  | Circular Sector  | 
  | 
  | 
  | 
  | |||||
Lateral  | S = 2 πrh  | 
  | 1  | 
  | 
  | 
  | ||||||||
Circle  | 
  | Area  | A = (a+b)h  | Area  | A =  | r2  | ||||||||
  | Surface  | |||||||||||||
  | 
  | 2  | ||||||||||||
Circumference C = 2 πr  | 
  | 2  | Total  | S = 2πrh + 2πr2  | Circular Ring  | 
  | π(R2– r2)  | |||||||
Area  | A = πr 2  | 
  | 
  | 
  | 
  | Surface  | Area  | A =  | ||||||
© Texas Instruments, 2007  | 
  | 
  | 
  | 
  | Volume  | V = πr2h  | education.ti.com/CabriJr  | |||||||
  | 
  | 
  | 
  | 
  | 
  | |||||||||