Algebra with the TI-84 Plus Silver Edition

Law of Exponents & Radicals

Formulas

Examples

Keystrokes

 

(where a=3, b=2, P=5,

 

 

Q=6, r=4, s=2)

 

 

 

 

Graphing Inequalities

ar x a s = a r + s

ar

as = ar – s

ap aq

34 x 3 2 = 3 4 + 2

0GD1T/E Õ729

34

 

32 = 34 – 2

0GD1U/E Õ9

35 x 36

 

The Inequality GraphingApp for The intersection ofy 2x-3

ar

= ap + q – r

34 = 35 + 6 – 4 0GD2T3U1EÕ2187

the TI-84 Plus Silver Edition is

and y > .5x2-7is shaded.

used here to enter the equations

 

(ab)r = arbr

(a ) r = ar (b 0)

b br

a r = sar

s

a0 = 1 (a 0)

a–r= 1 (a 0) ar

(3 x 2)4 = 34 x 24

0G1V/G1

Õ1296

3

4

 

 

34

 

 

(

 

)

=

 

 

 

 

 

Õ5.0625

2

24

0G1W/G1

2

 

4

 

 

 

 

1 ç2D6G/E Õ3

9 4 =

92

30 = 1

 

 

 

 

0G7 Õ1

 

3-4 =

 

1

 

 

 

.W0G1 Õ.0123

 

 

 

 

34

y 2x-3 and y > .5x2-7.

Solving Linear Systems by Graphing

The intersection of two functions is the solution to the system. Graphing provides a quick and powerful way to solve linear systems.

1Enter equations in the oeditor.

Binomial Expansion

a (b + c) = ab + ac

(a + b) (c + d) = ac + ad + bc + bd

(a + b) 2 = a 2 + 2ab + b 2 (a – b) 2 = a 2 – 2ab + b 2

(a + b) 3 = a 3 + 3a 2b + 3ab 2 + b 3 (a – b) 3 = a 3 – 3a 2b + 3ab 2 – b 3

(a + b) 4 = a 4 + 4a 3b + 6a 2b2 + 4ab 3 + b 4

(a + b) 5 = a 5 + 5a 4b + 10a 3b2 + 10a 2b3 + 5ab 4 + b 5

Factoring

a2 – b 2 = (a + b) (a – b)

a2 + 2ab + b 2 = (a + b) 2 a2 – 2ab + b 2 = (a – b) 2

a3 + b 3 = (a + b) (a 2 – ab + b 2) a3b – ab = ab (a + 1) (a – 1)

a3 – b 3 = (a – b) (a 2 + ab + b 2)

Factorial

n! = n (n-1) (n-2) ... (2) (1) Example: 5! = 5 (4) (3) (2) (1) Keystrokes: 5! = ￿ç4 Õ120

Logarithms ´µJ

y = log

 

x means ay = x

log xr = r log x

log x = log

x

 

 

a

 

 

a

a

 

10

 

loga xy = loga x + loga y

loga 1 = 0

 

 

log10 x

log

x

 

= log

x – log y

log

a = 1

log x =

a y

 

a

a

a

 

a

log

a

In x = loge x

 

ln e = 1

 

10

 

 

 

 

 

 

2Press sto graph both equations.

(You may need to adjust the viewing window.)

3Press y/5: intersect to find the point of intersection.

4Press Õto select the 1st curve and again to select the 2nd curve.

5 Enter your best guess and press Õ.

Quadratic Formula

If a 0, the roots of ax 2 + bx + c = 0 are x = b± b2 - 4ac

 

 

 

 

 

 

 

 

 

 

 

2a

Example: 3x2 + 2x - 4

 

 

(where a=3, b=2, c=-4)

 

 

-2±

 

 

 

 

 

x =

2 2

- 4(3)(-4)

 

 

 

2(3)

 

Keystrokes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1

22 - 4(3)(-4)

 

 

/FU1V0VM1 Õ52

Step 2

-2 +

 

 

 

 

 

M/T%b2/E Õ5.211

 

52

 

 

 

-2 -

 

 

 

 

 

 

M/U%b2/E Õ-9.211

 

52

 

 

Step 3

5.211

 

 

 

 

 

 

28/..WD/V0EÕ0.869

 

2(3)

 

 

 

 

 

 

 

 

 

-9.211

 

 

 

 

 

M68/..WD/V0EÕ-1.535

 

2(3)

 

 

 

 

 

 

 

Using the Equation Solver

Use the Equation Solver on your TI-84 Plus Silver Edition to solve for any variable in an equation. In this example, the Solver is being used to find one of the roots of the polynomialx2 - 5x + 6.

1Press ç0: Solver…

2Enter equation (must be in form where equation is set equal to 0) and press Õ.

3Place cursor next to variable for which you would like to solve.

4Enter a guess for the value.

5 Press É\to see a solution.

© Texas Instruments, 2007

education.ti.com

Page 6
Image 6
Texas Instruments manual Algebra with the TI-84 Plus Silver Edition