
Algebra with the TI-84  Plus Silver Edition
Law of Exponents & Radicals
Formulas  | Examples  | Keystrokes  | 
  | (where a=3, b=2, P=5,  | 
  | 
  | Q=6, r=4, s=2)  | 
  | 
  | 
  | 
  | 
Graphing Inequalities
ar x a s = a r + s
ar
as = ar – s
ap aq
34 x 3 2 = 3 4 + 2  | 0GD1T/E Õ729  | 
34  | 
  | 
32 = 34 – 2  | 0GD1U/E Õ9  | 
35 x 36  | 
  | 
The Inequality GraphingApp for The intersection ofy ≤   | 
ar
= ap + q – r
34 = 35 + 6 – 4 0GD2T3U1EÕ2187  | 
the   | and y   | 
used here to enter the equations  | 
  | 
(ab)r = arbr
(a ) r = ar (b ≠ 0)
b br
a r = s√ar
s
a0 = 1 (a ≠ 0)
(3 x 2)4 = 34 x 24  | 0G1V/G1  | Õ1296  | ||||||||
3  | 4  | 
  | 
  | 34  | 
  | 
  | ||||
(  | 
  | )  | =  | 
  | 
  | 
  | 
  | 
  | Õ5.0625  | |
2  | 24  | 0G1W/G1  | ||||||||
2  | 
  | 4  | 
  | 
  | 
  | 
  | 1 ç2D6G/E Õ3  | |||
9 4 =  | √92  | |||||||||
30 = 1  | 
  | 
  | 
  | 
  | 0G7 Õ1  | 
  | ||||
  | 1  | 
  | 
  | 
  | .W0G1 Õ.0123  | |||||
  | 
  | 
  | 
  | |||||||
34
y ≤   | 
Solving Linear Systems by Graphing
The intersection of two functions is the solution to the system. Graphing provides a quick and powerful way to solve linear systems.
1Enter equations in the oeditor.
Binomial Expansion
a (b + c) = ab + ac
(a + b) (c + d) = ac + ad + bc + bd
(a + b) 2 = a 2 + 2ab + b 2 (a – b) 2 = a 2 – 2ab + b 2
(a + b) 3 = a 3 + 3a 2b + 3ab 2 + b 3 (a – b) 3 = a 3 – 3a 2b + 3ab 2 – b 3
(a + b) 4 = a 4 + 4a 3b + 6a 2b2 + 4ab 3 + b 4
(a + b) 5 = a 5 + 5a 4b + 10a 3b2 + 10a 2b3 + 5ab 4 + b 5
Factoring
a2 – b 2 = (a + b) (a – b)
a2 + 2ab + b 2 = (a + b) 2 a2 – 2ab + b 2 = (a – b) 2
a3 + b 3 = (a + b) (a 2 – ab + b 2) a3b – ab = ab (a + 1) (a – 1)
a3 – b 3 = (a – b) (a 2 + ab + b 2)
Factorial
n! = n 
Logarithms ´µJ
y = log  | 
  | x means ay = x  | log xr = r log x  | log x = log  | x  | ||||||
  | 
  | a  | 
  | 
  | a  | a  | 
  | 10  | 
  | ||
loga xy = loga x + loga y  | loga 1 = 0  | 
  | 
  | log10 x  | |||||||
log  | x  | 
  | = log  | x – log y  | log  | a = 1  | log x =  | ||||
a y  | 
  | a  | a  | a  | 
  | a  | log  | a  | |||
In x = loge x  | 
  | ln e = 1  | 
  | 10  | 
  | ||||||
  | 
  | 
  | 
  | 
  | |||||||
2Press sto graph both equations.
(You may need to adjust the viewing window.)
3Press y/5: intersect to find the point of intersection.
4Press Õto select the 1st curve and again to select the 2nd curve.
5 Enter your best guess and press Õ.
Quadratic Formula
If a ≠ 0, the roots of ax 2 + bx + c = 0 are x = 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 2a  | 
Example: 3x2 + 2x - 4  | 
  | 
  | (where a=3, b=2,   | ||||||||
  | 
  | 
  | 
  | 
  | 
  | ||||||
  | x =  | 2 2  | -   | 
  | |||||||
  | 
  | 2(3)  | 
  | Keystrokes  | |||||||
  | 
  | 
  | |||||||||
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | |
Step 1  | 22 -   | 
  | 
  | /FU1V0VM1 Õ52  | |||||||
Step 2  | 
  | √  | 
  | 
  | 
  | 
  | M/T%b2/E Õ5.211  | ||||
  | 52  | 
  | 
  | ||||||||
  | √  | 
  | 
  | 
  | 
  | 
  | 
  | M/U%b2/E   | |||
  | 52  | 
  | 
  | ||||||||
Step 3  | 5.211  | 
  | 
  | 
  | 
  | 
  | 
  | 28/..WD/V0EÕ0.869  | |||
  | 2(3)  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | ||
  | 
  | 
  | 
  | 
  | 
  | ||||||
  | 2(3)  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | |||
Using the Equation Solver
Use the Equation Solver on your 
1Press ç0: Solver…
2Enter equation (must be in form where equation is set equal to 0) and press Õ.
3Place cursor next to variable for which you would like to solve.
4Enter a guess for the value.
5 Press É\to see a solution.
© Texas Instruments, 2007  | education.ti.com  |