More Algebra with the TI-84 Plus Silver Edition
| Definition of Slope |
|
|
|
|
|
|
|
|
|
|
| The Distance Formula |
|
|
| ||||||||||||||||||||||
| This section uses theTopics in Algebra 1App for the | The Distance Formula is used to calculate the distance between two points. | ||||||||||||||||||||||||||||||||||||
| to help define slope. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| √ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||||||
|
| vertical change |
| rise |
| y | 2 | – y | 1 |
|
|
|
| d(P , P | ) = | (x | – x | )2 + (y | 2 | – y | )2 |
|
|
| ||||||||||||||
| m = |
|
|
| = |
|
|
| = x |
|
|
|
|
|
| 1 | 2 |
|
| 2 | 1 |
|
|
|
|
| 1 |
|
|
|
| |||||||
| horizontal change | run |
| 2 – x1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Example: Find the distances between the pointsP1 (2, 5) and P2 | ||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| √ |
|
|
|
|
|
| = √ |
|
| |||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| d(P , P | ) = |
| ||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | 2 |
|
| √ |
|
|
|
| √ |
|
|
| ≈ 6.403 | |||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| = |
|
| ||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| = | 25 + 16 | 41 | ||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Keystrokes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| To draw the line segment between | ||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| y<2:Line | M ¬¢¿¢¡¢ §Õ | |||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Equations of Lines
This section features theTopics in Algebra App1 for the
Ax + By = C | Standard form — graph using intercepts | ||||
y = mx + b | |||||
y – y1 = m(x – x1) | |||||
|
|
|
|
|
|
|
|
|
|
|
|
Quadratic Functions
This section features theConic GraphingApp for the
Equation of a circle: (x – H)2 + (y – k)2 = R2
Values are entered for the center and the radius. TheConic GraphingApp produces a circle you can now trace.
Standard form example |
|
|
| |
Given 3x + 2y = 6, | find intercepts: |
|
|
|
| 3(0) + 2y = 6 | 3x + 2(0) = 6 | x | y |
| 2y = 6 | 3x = 6 | 0 | 3 |
|
|
|
|
|
| y = 3 | x = 2 | 2 | 0 |
|
|
| ||
|
|
| ||
Given m=3 and |
|
|
| |
Equation | y – |
|
|
|
| y + 3 = 3x – 6 |
|
|
|
| y = 3x – 9 |
|
|
|
Equation of a parabola: (x – H)2 = 4P(y – k)
Values are entered for the vertex (H, K) and the distance (P) between the directrix and the vertex. The Conic Graphing App produces a parabola you can now trace.
The Transformation GraphingApp allows you to see what happens to a graph as you change its coefficient(s).
Keystrokes oë¬ÑπÆq_
© Texas Instruments, 2007 |
| education.ti.com |