General Information

Free Cooling Cycle

Based on the principle that refrigerant migrates to the coldest area in the system, the free cooling option adapts the basic chiller to function as a simple heat exchanger. However, it does not provide control of the leaving chilled water temperature.

If condenser water is available at a temperature lower than the required leaving chilled water temperature, the operator interface must remain in “AUTO” and the operator starts the free cooling cycle by enabling the Free cooling mode in the “DynaViewFeature Settings” group of the operator interface, or by means of a Tracer request.

Several components must be factory- installed or field-installed to equip the unit for free cooling operation:

a refrigerant gas line, and electrically-actuated shutoff valve, between the evaporator and condenser;

a valve liquid return line, and electrically-actuated shutoff valve, between the condenser sump and the evaporator;

a liquid refrigerant storage vessel (larger economizer); and,

additional refrigerant.

When the chiller is changed over to the free cooling mode, the compressor will shut down if running, the shutoff valves in the liquid and gas lines open; unit control logic prevents the compressor from energizing during free cooling. Liquid refrigerant then drains (by gravity) from the storage tank into the evaporator and floods the tube bundle. Since the temperature and pressure of the refrigerant in the evaporator are higher than in the condenser (i.e., because of the difference in water temperature), the refrigerant in the evaporator vaporizes and travels to the condenser. Cooling tower water causes the refrigerant to condense, and it flows (again, by gravity) back to the evaporator.

This compulsory refrigerant cycle is sustained as long as a temperature differential exists between condenser and evaporator water. The actual cooling capacity provided by the free cooling cycle is determined by the difference between these temperatures which, in turn, determines the rate of refrigerant flow between the evaporator and condenser shells.

If the system load exceeds the available free cooling capacity, the operator must manually initiate changeover to the mechanical cooling mode by disabling the free cooling mode of operation. The gas and liquid line valves then close and compressor operation begins. (See Figure 8 beginning at “Auto” mode.) Refrigerant gas is drawn out of the evaporator by the compressor, where

CVHE-SVU01E-EN

21

Page 21
Image 21
Trane CVHE-SVU01E-ENX39640712050 manual Free Cooling Cycle

CVHE-SVU01E-ENX39640712050 specifications

The Trane CVHE-SVU01E-ENX39640712050 is a high-efficiency centrifugal chiller designed for commercial and industrial applications. This state-of-the-art unit is engineered to provide reliable cooling performance, energy efficiency, and optimized operational flexibility. It is particularly suitable for large-scale facilities that require significant cooling capacity and robust performance under varying load conditions.

One of the most notable features of the CVHE-SVU01E series is its advanced variable speed drive technology. This technology enables the chiller to adjust its speed according to the cooling demands of the facility, resulting in substantial energy savings. By operating at optimal speeds, this unit reduces power consumption and enhances overall efficiency. This is noteworthy in the context of rising energy costs and increasing sustainability demands across various industries.

Moreover, the CVHE-SVU01E is equipped with Trane’s proprietary Compliant Scroll compressor technology. This innovative compressor design minimizes mechanical losses and increases the efficiency of the chiller system. Additionally, the compressor is specifically designed to handle varying refrigerant flow rates, allowing the chiller to maintain performance even when faced with fluctuating conditions.

Another significant characteristic of this chiller model is its use of environmentally friendly refrigerants, aligning with global regulations aimed at reducing greenhouse gas emissions. This commitment to sustainability ensures that the CVHE-SVU01E not only provides excellent cooling performance but also adheres to contemporary environmental standards.

The unit utilizes an advanced control system that simplifies operation and enhances troubleshooting capabilities. The intuitive interface allows facility managers to monitor performance metrics, optimize operation schedules, and conduct remote diagnostics, significantly reducing costly downtime and maintenance efforts.

Furthermore, the compact and modular design of the CVHE-SVU01E makes it easy to install in various settings. Its durability is ensured through the use of high-quality materials and components, designed to withstand the rigors of demanding environments. With reduced maintenance requirements, facility operators can focus on core business functions without frequent interruptions.

In summary, the Trane CVHE-SVU01E-ENX39640712050 combines cutting-edge technologies and features to deliver exceptional performance, efficiency, and reliability in commercial cooling applications. Its advanced design contributes to reduced energy costs, minimal environmental impact, and greater operational flexibility, making it an excellent choice for organizations seeking sustainable and efficient cooling solutions.