General Information

Cooling Cycle

CVHE, CVHG, CVHF

When in the cooling mode, liquid refrigerant is distributed along the length of the evaporator and sprayed through small holes in a distributor (i.e., running the entire length of the shell) to uniformly coat each evaporator tube. Here, the liquid refrigerant absorbs enough heat from the system water circulating through the evaporator tubes to vaporize.

The gaseous refrigerant is then drawn through the eliminators (which remove droplets of liquid refrigerant from the gas) and first- stage variable inlet guide vanes, and into the first stage impeller.

Note: Inlet guide vanes are designed to modulate the flow of gaseous refrigerant to meet system capacity requirements; they also prerotate the gas, allowing it to enter the impeller at an optimal angle that maximizes efficiency at all load conditions.

CVHE, CVHG Compressor Compressed gas from the first-stage impeller flows through the fixed, second-stage inlet vanes and into the second-stage impeller.

Here, the refrigerant gas is again compressed, and then discharged through the third-stage variable guide vanes and into the third stage impeller.

Once the gas is compressed a third time, it is discharged into the

condenser. Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water circulated through the condenser tubes absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then passes through orifice plate ‘‘A’’ and into the economizer.

The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all gaseous refrigerant through three stages of compression. See Figure 3. Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plates, thus further cooling the liquid refrigerant. This flash gas is then drawn directly from the first (Chamber A) and second (Chamber

B)stages of the economizer into the third-and second-stage impellers of the compressor, respectively.

All remaining liquid refrigerant flows through another orifice plate ‘‘C’’ to the evaporator.

CVHF Compressor

Compressed gas from the first-stage impeller is discharged through the second-stage variable guide vanes and into the second-stage impeller. Here, the refrigerant gas is again compressed, and then discharged into the condenser.

Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water, circulated through the condenser tubes, absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then flows out of the bottom of the condenser, passing through an orifice plate and into the economizer.

The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all gaseous refrigerant through both stages of compression. See Figure 6. Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plate, thus further cooling the liquid refrigerant. This flash gas is then drawn directly from the economizer into the second-stage impellers of the compressor.

All remaining liquid refrigerant flows out of the economizer, passes through another orifice plate and into the evaporator.

10

CVHE-SVU01E-EN

Page 10
Image 10
Trane CVHE-SVU01E-ENX39640712050 manual Cooling Cycle, Cvhf Compressor

CVHE-SVU01E-ENX39640712050 specifications

The Trane CVHE-SVU01E-ENX39640712050 is a high-efficiency centrifugal chiller designed for commercial and industrial applications. This state-of-the-art unit is engineered to provide reliable cooling performance, energy efficiency, and optimized operational flexibility. It is particularly suitable for large-scale facilities that require significant cooling capacity and robust performance under varying load conditions.

One of the most notable features of the CVHE-SVU01E series is its advanced variable speed drive technology. This technology enables the chiller to adjust its speed according to the cooling demands of the facility, resulting in substantial energy savings. By operating at optimal speeds, this unit reduces power consumption and enhances overall efficiency. This is noteworthy in the context of rising energy costs and increasing sustainability demands across various industries.

Moreover, the CVHE-SVU01E is equipped with Trane’s proprietary Compliant Scroll compressor technology. This innovative compressor design minimizes mechanical losses and increases the efficiency of the chiller system. Additionally, the compressor is specifically designed to handle varying refrigerant flow rates, allowing the chiller to maintain performance even when faced with fluctuating conditions.

Another significant characteristic of this chiller model is its use of environmentally friendly refrigerants, aligning with global regulations aimed at reducing greenhouse gas emissions. This commitment to sustainability ensures that the CVHE-SVU01E not only provides excellent cooling performance but also adheres to contemporary environmental standards.

The unit utilizes an advanced control system that simplifies operation and enhances troubleshooting capabilities. The intuitive interface allows facility managers to monitor performance metrics, optimize operation schedules, and conduct remote diagnostics, significantly reducing costly downtime and maintenance efforts.

Furthermore, the compact and modular design of the CVHE-SVU01E makes it easy to install in various settings. Its durability is ensured through the use of high-quality materials and components, designed to withstand the rigors of demanding environments. With reduced maintenance requirements, facility operators can focus on core business functions without frequent interruptions.

In summary, the Trane CVHE-SVU01E-ENX39640712050 combines cutting-edge technologies and features to deliver exceptional performance, efficiency, and reliability in commercial cooling applications. Its advanced design contributes to reduced energy costs, minimal environmental impact, and greater operational flexibility, making it an excellent choice for organizations seeking sustainable and efficient cooling solutions.