Installing the Software

Follow these steps to install the WP-Admin software and configure the print server.

1.Insert the EtherWind Wireless Configuration CD-ROM into your PC or Macintosh.

Note:

There is also a Linux version of the WP-Admin utility available on the TROY website (www.troygroup.com).

2.If you are using a Windows computer, click on Install TROY EtherWind Utilities, then click on Install EtherWind Configuration Utilities and Printing Software. If you are using a Macintosh computer, open the Mac folder (for Mac OS 8.x or 9.x) or the Mac OS X folder.

Note:

If you are using Windows and don’t have the Java Runtime installed on your system, you will be prompted to install it, click Continue.

3.Follow the on-screen instructions for installing the utility. When WP-Admin starts, you will see the WP-Admin Wireless Server Search screen, which will look like this:

4.Click START to begin searching for print servers. WP-Admin will get the information from the print server(s) and list the Server Name and Ethernet Address (which should correspond with the label on the back of the print serv- er). It might take a minute or two for the print server to show up, especially if you have a large wireless network. Note that by default the name of the EtherWind print server is XCD_xxxxxx, where xxxxxx is the last six digits of the Ethernet (MAC) address (for example, XCD_08B2C7).

2-3

Page 17
Image 17
TROY Group 802.11b manual Installing the Software

802.11b specifications

TROY Group 802.11b is a significant advancement in wireless networking technology, introduced in the late 1990s. Operating within the 2.4 GHz frequency band, 802.11b provided users with robust connectivity and established a foundation for future wireless standards. This protocol marked a transition from wired networking to wireless, enabling greater mobility and flexibility for users.

One of the main features of the 802.11b standard is its data transmission rate, which supports speeds of up to 11 Mbps. While this may seem modest by today’s standards, it was a groundbreaking achievement at the time. The 802.11b technology utilized Direct Sequence Spread Spectrum (DSSS) modulation, which allowed multiple data streams to coexist with minimal interference. This was crucial in environments with numerous wireless devices.

Security was another important consideration, and 802.11b incorporated Wired Equivalent Privacy (WEP) for data protection. WEP attempted to secure wireless transmissions by encrypting data packets, although it was later found to have vulnerabilities. Nevertheless, it was a starting point for securing wireless communication until more robust security protocols, such as WPA and WPA2, were developed.

The compatibility of 802.11b with earlier standards like 802.11 meant that devices could be mixed and matched, allowing for a smooth transition to wireless networks. With a typical range of around 100 to 300 feet, it was suitable for various environments, from homes to offices. In addition, the protocol facilitated peer-to-peer networking, allowing devices to communicate directly without the need for an access point.

In terms of hardware, 802.11b required compatible wireless network interface cards (NICs) and access points. These devices were increasingly integrated into laptops and desktops, leading to widespread adoption and the growing popularity of wireless networking in everyday life.

In conclusion, TROY Group 802.11b laid the groundwork for modern wireless communication. Its features, including data rates of up to 11 Mbps, DSSS modulation, and initial security measures like WEP, made it a pioneer in the industry. Although it has been succeeded by faster and more secure protocols, the legacy of 802.11b lives on as a crucial development in the evolution of wireless technology, setting the stage for the high-speed and secure connections that users enjoy today.