Intel E8501 manual Figures

Page 4

 

8.5

XMB Heatsink Thermal Solution Assembly

38

 

 

8.5.1

Heatsink Orientation

39

 

 

8.5.2

Extruded Heatsink Profiles

40

 

 

8.5.3

Mechanical Interface Material

40

 

 

8.5.4

Thermal Interface Material

40

 

 

8.5.5

Heatsink Retaining Fastener

40

 

8.6

Reliability Guidelines

41

A

Thermal Solution Component Suppliers

43

B

Mechanical Drawings

47

Figures

1-1

Thermal Design Process

8

2-1

NB Package Dimensions (Top View)

11

2-2

NB Package Dimensions (Side View)

11

2-3

NB Package Dimensions (Bottom View)

12

2-4

XMB Package Dimensions (Top View)

13

2-5

XMB Package Dimensions (Side View)

13

2-6

XMB Package Dimensions (Bottom View)

14

5-1

Thermal Solution Decision Flowchart

20

5-2

Zero Degree Angle Attach Heatsink Modifications

20

5-3

Zero Degree Angle Attach Methodology (Top View)

20

6-1

First NB Reference Heatsink Measured Thermal Performance vs.

 

 

Approach Velocity

24

6-2

First NB Reference Heatsink Volumetric Envelope

25

6-3

First NB Heatsink Board Component Keepout

26

6-4

First NB Heatsink Assembly

27

6-5

First NB Heatsink Extrusion Profile

28

7-1

Second NB Reference Heatsink Measured Thermal Performance vs.

 

 

Approach Velocity

32

7-2

Second NB Reference Heatsink Volumetric Envelope

33

7-3

Second NB Heatsink Assembly

34

8-1

XMB Reference Heatsink Measured Thermal Performance vs. Approach Velocity

37

8-2

XMB Reference Heatsink Volumetric Envelope

38

8-3

XMB Heatsink Board Component Keepout

39

8-4

XMB Heatsink Assembly

39

8-5

XMB Heatsink Extrusion Profile

41

B-1

NB Heatsink #1 Assembly Drawing

48

B-2

NB Heatsink #1 Drawing

49

B-3

NB Heatsink #2 Assembly Drawing

50

B-4

NB Heatsink #2 Drawing

51

B-5

XMB Heatsink Assembly Drawing

52

B-6

XMB Heatsink Drawing

53

4

Intel® E8500/8501 Chipset North Bridge (NB) and eXternal Memory

 

Bridge (XMB) Thermal/Mechanical Design Guide

Image 4
Contents Thermal/Mechanical Design Guide Bridge XMB Thermal/Mechanical Design Guide Contents Figures Tables Revision History Document Revision Description DateIntroduction Design FlowDefinition of Terms Thermal Design ProcessReference Documents XMBIntroduction NB Package Dimensions Top View Packaging TechnologyNB Package Dimensions Bottom View XMB Package Dimensions Top View XMB Package Dimensions Bottom View Package Mechanical RequirementsThermal Specifications Thermal Design Power TDPDie Case Temperature Specifications Intel E8500 Chipset NB Thermal SpecificationsIntel E8500 Chipset XMB Thermal Specifications Intel E8501 Chipset NB Thermal SpecificationsIntel E8501 Chipset XMB Thermal Specifications Thermal Simulation Thermal Simulation Die Case Temperature Measurements Thermal MetrologyThermal Solution Decision Flowchart Power Simulation Software Thermal Metrology Operating Environment NB Reference Thermal Solution #1Heatsink Performance Mechanical Design Envelope Board-Level Components Keepout Dimensions First NB Reference Heatsink Volumetric EnvelopeFirst NB Heatsink Thermal Solution Assembly First NB Heatsink Board Component KeepoutExtruded Heatsink Profiles Heatsink Retaining Fastener Reliability Guidelines Reliability GuidelinesNB Reference Thermal Solution #1 NB Reference Thermal Solution #2 NB Reference Thermal Solution #2 Second NB Heatsink Thermal Solution Assembly Second NB Reference Heatsink Volumetric EnvelopeSecond NB Heatsink Assembly Please refer to .6 for detail NB Reference Thermal Solution #2 XMB Reference Thermal Solution XMB Heatsink Thermal Solution Assembly XMB Reference Heatsink Volumetric EnvelopeXMB Location Extruded Heatsink Profiles XMB Heatsink Extrusion Profile XMB Reference Thermal Solution Thermal Solution Component Suppliers Table A-1 NB Heatsink Thermal Solution #1Table A-2 NB Heatsink Thermal Solution #2 Table A-3 XMB Heatsink Thermal Solution Thermal Solution Component Suppliers Mechanical Drawings Table B-1. Mechanical Drawing ListFigure B-1. NB Heatsink #1 Assembly Drawing Figure B-2. NB Heatsink #1 Drawing Figure B-3. NB Heatsink #2 Assembly Drawing Figure B-4. NB Heatsink #2 Drawing Figure B-5. XMB Heatsink Assembly Drawing Figure B-6. XMB Heatsink Drawing Mechanical Drawings

E8501 specifications

The Intel E8501 is a high-performance server processor that belongs to the Intel Itanium 2 family, designed primarily for enterprise-level demands. With its advanced architecture, the E8501 targets mission-critical applications that require reliability, availability, and serviceability (RAS) alongside superior computational power.

One of the key features of the Intel E8501 is its 64-bit architecture, allowing for the handling of larger data sets and improved performance for applications that demand extensive computations. This architecture is built on Intel's Explicitly Parallel Instruction Computing (EPIC) design, which enhances instruction-level parallelism and enables efficient processing of multiple instructions simultaneously, resulting in faster execution of complex tasks.

The E8501 processor is equipped with a maximum clock speed of 1.6 GHz and supports 4MB of L3 cache, significantly improving data retrieval speeds and overall throughput. The chipset accommodates up to 64GB of RAM across four DIMM slots, thus providing ample memory for demanding applications, such as databases and high-performance computing.

Additionally, the E8501 incorporates Intel's Advanced Smart Cache technology, which allows multiple cores to share the cache dynamically. This enhances performance by reducing latency and improving bandwidth for multi-threaded workloads. The processor also employs a dual-core design, which means it can execute multiple threads concurrently, thus maximizing processing efficiency.

Furthermore, the E8501 processor provides support for advanced virtualization technologies, enabling multiple operating systems to run on a single server instance. This capability is essential for data centers managing diverse workloads and consolidating IT resources.

Power efficiency is another significant characteristic of the Intel E8501, featuring enhancements that reduce power consumption while maintaining performance. This is critically important in enterprise environments where energy costs are a substantial concern.

The processor is also equipped with built-in security features, including data encryption capabilities and mechanisms to protect against certain types of cyber threats. These features ensure that sensitive enterprise data remains secure.

In summary, the Intel E8501 stands out as a robust server processor designed to meet the rigorous demands of enterprise-level applications. Its combination of 64-bit architecture, advanced caching mechanisms, virtualization support, and exceptional performance makes it a compelling choice for organizations seeking to enhance their computational capabilities and maintain high levels of reliability. As businesses continue to evolve and require more from their computing environments, the E8501's technologies and features position it as a reliable foundation for mission-critical applications.